Not Every Side Is Equal: Localization Uncertainty Estimation for Semi-Supervised 3D Object Detection
This repository contains an implementation of Nesie, a Semi-Supervised 3D Object Detection method introduced in our paper:
[Project Webpage] [Paper]
- 18. July 2023: Nesie is accepted at ICCV 2023.
- October 2023: Nesie PDF released.
- December 2023: Code (Nesie) for ScanNet dataset released.
- May 2024: Code (SAQE) for ScanNet dataset released. 🔥
- [✔] Code (Nesie) for ScanNet dataset.
- [✔] Code (SAQE) for ScanNet dataset.
- Code (Nesie) for SunRGB-D dataset.
- Code (SAQE) for SunRGB-D dataset.
Please following the env_setup.sh
We follow the mmdetection3d
data preparation protocol described in scannet, sunrgbd.
Pre-training
To start pre-training, run with Nesie
configs or SAQE
configs:
CUDA_VISIBLE_DEVICES=$gpu_id OMP_NUM_THREADS=24 \
python tools/train.py \
configs/Nesie(SAQE)/nesie(saqe)-votenet-scannet-pretrain-$Ratio.py \
--gpu-ids 0
Training
To start training, run with Nesie
configs or SAQE
configs:
CUDA_VISIBLE_DEVICES=$gpu_id OMP_NUM_THREADS=24 \
python tools/train.py \
configs/Nesie(SAQE)/nesie(saqe)-votenet-scannet-train-$Ratio.py \
--gpu-ids 0 \
--load-from work_dirs/nesie(saqe)-votenet-scannet-pretrain-$Ratio/epoch_36.pth
Testing
Test model using with Nesie
configs or SAQE
configs:
CUDA_VISIBLE_DEVICES=$gpu_id OMP_NUM_THREADS=24 \
python tools/test.py \
configs/Nesie(SAQE)/nesie(saqe)-votenet-scannet-test.py \
work_dirs/nesie(saqe)-votenet-scannet-train-$Ratio/epoch_36.pth --eval mAP --seed 9
Comparison with state-of-the-art methods on ScanNet dataset. Ours† represents the Nesie version and Ours represents the SAQE version.
Comparison with state-of-the-art methods on SunRGBD dataset. Ours† represents the Nesie version and Ours represents the SAQE version.
Visulization of Detection Results
If you find this work useful for your research, please cite our paper:
@InProceedings{Wang_2023_ICCV,
author = {ChuXin Wang and Wenfei Yang and Tianzhu Zhang},
title = {Not Every Side Is Equal: Localization Uncertainty Estimation for Semi-Supervised 3D Object Detection},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
month = {October},
year = {2023},
}