Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[OpenCL][kernel] Set PriorBox and PriorBoxVar as const weights in Box coder #5930

Merged
merged 2 commits into from
Apr 21, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion lite/core/mir/elimination/ssd_boxes_calc_offline_pass.cc
Original file line number Diff line number Diff line change
Expand Up @@ -469,4 +469,4 @@ void SSDBoxesCalcOfflinePass::ComputeConcat(

REGISTER_MIR_PASS(ssd_boxes_calc_offline_pass,
paddle::lite::mir::SSDBoxesCalcOfflinePass)
.BindTargets({TARGET(kRKNPU), TARGET(kNPU)});
.BindTargets({TARGET(kRKNPU), TARGET(kNPU), TARGET(kOpenCL)});
77 changes: 53 additions & 24 deletions lite/kernels/opencl/box_coder_image_compute.cc
Original file line number Diff line number Diff line change
Expand Up @@ -48,6 +48,44 @@ class BoxCoderComputeImage : public KernelLite<TARGET(kOpenCL),
LOG(FATAL) << "This code_type " << boxcoder_param_->code_type
<< " doesn't support";
}

// H2D: prior_box, prior_box
CLImageConverterNormal converter;
priorbox_gpu_image_ = std::unique_ptr<Tensor>(new Tensor);
priorboxvar_gpu_image_ = std::unique_ptr<Tensor>(new Tensor);
auto priorbox_cpu_image = std::unique_ptr<Tensor>(new Tensor);
auto priorboxvar_cpu_image = std::unique_ptr<Tensor>(new Tensor);

const auto* priorbox_cpu = boxcoder_param_->prior_box->data<float>();
const auto& priorbox_dims = boxcoder_param_->prior_box->dims();
auto image_shape = InitImageDimInfoWith(priorbox_dims);
priorbox_cpu_image->Resize(
{1, image_shape["width"], image_shape["height"], 4});
auto* priorbox_image_data = MUTABLE_DATA_CPU(priorbox_cpu_image);
converter.NCHWToImage(
const_cast<float*>(priorbox_cpu), priorbox_image_data, priorbox_dims);
MUTABLE_DATA_GPU(priorbox_gpu_image_,
image_shape["width"],
image_shape["height"],
priorbox_image_data);

const auto* priorboxvar_cpu = boxcoder_param_->prior_box_var->data<float>();
const auto& priorboxvar_dims = boxcoder_param_->prior_box_var->dims();
image_shape = InitImageDimInfoWith(priorboxvar_dims);
priorboxvar_cpu_image->Resize(
{1, image_shape["width"], image_shape["height"], 4});
auto* priorboxvar_image_data = MUTABLE_DATA_CPU(priorboxvar_cpu_image);
converter.NCHWToImage(const_cast<float*>(priorboxvar_cpu),
priorboxvar_image_data,
priorboxvar_dims);
MUTABLE_DATA_GPU(priorboxvar_gpu_image_,
image_shape["width"],
image_shape["height"],
priorboxvar_image_data);

priorbox_image_ = DATA_GPU(priorbox_gpu_image_);
priorboxvar_image_ = DATA_GPU(priorboxvar_gpu_image_);

CHECK(context.cl_context() != nullptr);
VLOG(1) << "kernel_func_name_:" << kernel_func_name_;
context.cl_context()->AddKernel(kernel_func_name_,
Expand All @@ -65,18 +103,9 @@ class BoxCoderComputeImage : public KernelLite<TARGET(kOpenCL),
boxcoder_param_->proposals->mutable_data<half_t, cl::Image2D>(
image_shape["width"], image_shape["height"]);

#ifdef LITE_WITH_LOG
VLOG(4) << "boxcoder input shape: ";

#endif
const auto* input_priorbox = boxcoder_param_->prior_box;
const auto* input_priorboxvar = boxcoder_param_->prior_box_var;
const auto* input_targetbox = boxcoder_param_->target_box;
const auto& code_type = boxcoder_param_->code_type;
if (code_type == "decode_center_size") {
auto* prior_box_image = input_priorbox->data<half_t, cl::Image2D>();
auto* prior_box_var_image =
input_priorboxvar->data<half_t, cl::Image2D>();
auto* target_box_image = input_targetbox->data<half_t, cl::Image2D>();

int new_dims[4] = {1, 1, 1, 1};
Expand All @@ -99,8 +128,13 @@ class BoxCoderComputeImage : public KernelLite<TARGET(kOpenCL),
int out_H = new_dims[2];
#ifdef LITE_WITH_LOG
VLOG(4) << TargetToStr(boxcoder_param_->proposals->target());
VLOG(4) << "output shape: " << out_dims[0] << ", " << out_dims[1] << ", "
<< out_dims[2] << ", " << out_dims[3];
VLOG(4) << "input[PriorBox] shape: "
<< boxcoder_param_->prior_box->dims();
VLOG(4) << "input[PriorBoxVar] shape: "
<< boxcoder_param_->prior_box_var->dims();
VLOG(4) << "input[TargetBox] shape: "
<< boxcoder_param_->target_box->dims();
VLOG(4) << "output[OutputBox] shape: " << out_dims;
VLOG(4) << "image_shape(w,h):" << image_shape["width"] << " "
<< image_shape["height"];
VLOG(4) << "out_C = " << out_C;
Expand All @@ -109,9 +143,9 @@ class BoxCoderComputeImage : public KernelLite<TARGET(kOpenCL),
<< default_work_size[1] << ", " << default_work_size[2];
#endif
int arg_idx = 0;
cl_int status = kernel.setArg(arg_idx++, *prior_box_image);
cl_int status = kernel.setArg(arg_idx++, *priorbox_image_);
CL_CHECK_FATAL(status);
status = kernel.setArg(arg_idx++, *prior_box_var_image);
status = kernel.setArg(arg_idx++, *priorboxvar_image_);
CL_CHECK_FATAL(status);
status = kernel.setArg(arg_idx++, *target_box_image);
CL_CHECK_FATAL(status);
Expand All @@ -133,11 +167,6 @@ class BoxCoderComputeImage : public KernelLite<TARGET(kOpenCL),
nullptr,
event_);
CL_CHECK_FATAL(status);

#ifdef LITE_WITH_LOG
VLOG(4) << "global_work_size:[2D]:" << global_work_size[0] << " "
<< global_work_size[1];
#endif
}
}
std::string doc() { return "Boxcoder using cl::Image, kFP16"; }
Expand All @@ -154,6 +183,10 @@ class BoxCoderComputeImage : public KernelLite<TARGET(kOpenCL),
std::string kernel_func_name_{};
std::string build_options_{""};
std::string time_stamp_{GetTimeStamp()};
std::unique_ptr<Tensor> priorbox_gpu_image_{nullptr};
std::unique_ptr<Tensor> priorboxvar_gpu_image_{nullptr};
const cl::Image2D* priorbox_image_{nullptr};
const cl::Image2D* priorboxvar_image_{nullptr};
};

} // namespace opencl
Expand All @@ -165,13 +198,9 @@ typedef paddle::lite::kernels::opencl::BoxCoderComputeImage BoxCoder_image;
REGISTER_LITE_KERNEL(
box_coder, kOpenCL, kFP16, kImageDefault, BoxCoder_image, ImageDefault)
.BindInput("PriorBox",
{LiteType::GetTensorTy(TARGET(kOpenCL),
PRECISION(kFP16),
DATALAYOUT(kImageDefault))})
{LiteType::GetTensorTy(TARGET(kHost), PRECISION(kFloat))})
.BindInput("PriorBoxVar",
{LiteType::GetTensorTy(TARGET(kOpenCL),
PRECISION(kFP16),
DATALAYOUT(kImageDefault))})
{LiteType::GetTensorTy(TARGET(kHost), PRECISION(kFloat))})
.BindInput("TargetBox",
{LiteType::GetTensorTy(TARGET(kOpenCL),
PRECISION(kFP16),
Expand Down
5 changes: 3 additions & 2 deletions lite/kernels/opencl/conv_image_compute.cc
Original file line number Diff line number Diff line change
Expand Up @@ -1346,17 +1346,18 @@ void ConvImageCompute::Run() {
(this->*impl_)();

auto& context = ctx_->As<OpenCLContext>();
/*
status_ = context.cl_context()->RunKernel(
kernel_, global_work_size_, local_work_size_, &event_);
/*
*/

status_ = EnqueueNDRangeKernel(context,
kernel_,
cl::NullRange,
global_work_size_,
local_work_size_,
nullptr,
event_);
*/
CL_CHECK_FATAL(status_);
}

Expand Down