-
Notifications
You must be signed in to change notification settings - Fork 5.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
d53972f
commit 51ba2a0
Showing
5 changed files
with
250 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,185 @@ | ||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import unittest | ||
|
||
import paddle | ||
import paddle.nn.functional as F | ||
from paddle import nn, static, utils | ||
from paddle.distributed import fleet | ||
from paddle.distributed.auto_parallel.static.cluster import Cluster | ||
from paddle.distributed.auto_parallel.static.completion import Completer | ||
from paddle.distributed.auto_parallel.static.cost import calc_time_by_cost_model | ||
from paddle.distributed.auto_parallel.static.dist_context import ( | ||
DistributedContext, | ||
) | ||
from paddle.distributed.auto_parallel.static.parallelizer import ( | ||
AutoParallelizer, | ||
) | ||
from paddle.distributed.auto_parallel.static.partitioner import Partitioner | ||
from paddle.distributed.auto_parallel.static.reshard import Resharder | ||
from paddle.distributed.fleet import auto | ||
|
||
paddle.enable_static() | ||
_global_parallel_strategy = "dp_mp_pp" | ||
_global_process_mesh = auto.ProcessMesh( | ||
[[[0, 1], [4, 5]], [[2, 3], [6, 7]]], dim_names=["x", "y", "z"] | ||
) | ||
PP_MESH_0 = auto.ProcessMesh([[0, 1], [4, 5]], dim_names=["x", "y"]) | ||
PP_MESH_1 = auto.ProcessMesh([[2, 3], [6, 7]], dim_names=["x", "y"]) | ||
|
||
|
||
class MLPLayer(nn.Layer): | ||
def __init__( | ||
self, | ||
hidden_size=1024, | ||
intermediate_size=4 * 1024, | ||
initializer_range=0.02, | ||
): | ||
super().__init__() | ||
d_model = hidden_size | ||
dim_feedforward = intermediate_size | ||
weight_attr = paddle.ParamAttr( | ||
initializer=nn.initializer.Normal(mean=0.0, std=initializer_range) | ||
) | ||
bias_attr = None | ||
|
||
self.linear0 = nn.Linear( | ||
d_model, dim_feedforward, weight_attr, bias_attr=bias_attr | ||
) | ||
self.linear1 = nn.Linear( | ||
dim_feedforward, d_model, weight_attr, bias_attr=bias_attr | ||
) | ||
self.norm = nn.LayerNorm(d_model, epsilon=1e-5) | ||
|
||
def forward(self, input): | ||
auto.shard_tensor(self.linear0.weight, PP_MESH_0, [None, "y"]) | ||
auto.shard_tensor(self.linear1.weight, PP_MESH_1, ["y", None]) | ||
|
||
out = self.norm(input) | ||
out = self.linear0(out) | ||
out = F.gelu(out, approximate=True) | ||
out = self.linear1(out) | ||
param = paddle.create_parameter([1024, 4096], paddle.float32) | ||
auto.shard_tensor(param, PP_MESH_1, [None, "y"]) | ||
out = paddle.matmul(out, param) | ||
|
||
return out | ||
|
||
|
||
def mlp_forward(train_program, start_program): | ||
with static.program_guard( | ||
train_program, start_program | ||
), utils.unique_name.guard(): | ||
batch_size = 4 | ||
hidden_size = 1024 | ||
sequence_len = 512 | ||
input = static.data( | ||
name="input", shape=[batch_size, hidden_size], dtype='float32' | ||
) | ||
label = static.data( | ||
name="label", shape=[batch_size, 1], dtype='float32' | ||
) | ||
|
||
auto.shard_tensor(input, PP_MESH_0, ["x", None]) | ||
auto.shard_tensor(label, PP_MESH_1, ["x", None]) | ||
|
||
mlp = MLPLayer( | ||
hidden_size=hidden_size, | ||
intermediate_size=4 * hidden_size, | ||
initializer_range=0.02, | ||
) | ||
|
||
predict = mlp(input) | ||
error_cost = paddle.nn.functional.square_error_cost(predict, label) | ||
loss = paddle.mean(error_cost) | ||
|
||
return loss, train_program, start_program | ||
|
||
|
||
def get_dist_prog(train_program, startup_program, dist_context, rank_id): | ||
global _global_process_mesh | ||
dist_context.process_mesh = _global_process_mesh | ||
loss, train_program, startup_program = mlp_forward( | ||
train_program, startup_program | ||
) | ||
|
||
fleet._user_defined_strategy = fleet.DistributedStrategy() | ||
fleet.user_defined_optimizer = paddle.optimizer.Adam() | ||
parallelizer = AutoParallelizer(fleet) | ||
parallelizer._dist_context = dist_context | ||
|
||
# serial forward & backward completion | ||
completer = Completer(dist_context) | ||
complete_train_program = completer.complete_forward_annotation( | ||
train_program | ||
) | ||
dist_context.block_state.parse_forward_blocks(complete_train_program) | ||
params_grads = parallelizer._generate_backward( | ||
complete_train_program, | ||
startup_program, | ||
loss, | ||
parameter_list=None, | ||
no_grad_set=None, | ||
callbacks=None, | ||
) | ||
|
||
# logical partition | ||
partitioner = Partitioner(dist_context, rank_id) | ||
( | ||
auto_parallel_main_prog, | ||
auto_parallel_startup_prog, | ||
dist_params_grads, | ||
) = partitioner.partition( | ||
complete_train_program, startup_program, params_grads | ||
) | ||
|
||
partitioned_optimize_ops = parallelizer._apply_optimize( | ||
auto_parallel_main_prog, auto_parallel_startup_prog, dist_params_grads | ||
) | ||
|
||
return ( | ||
auto_parallel_main_prog, | ||
auto_parallel_startup_prog, | ||
dist_params_grads, | ||
) | ||
|
||
|
||
class TestCostInterface(unittest.TestCase): | ||
def test_cost_interface(self): | ||
train_program = paddle.static.Program() | ||
startup_program = paddle.static.Program() | ||
dist_context = DistributedContext() | ||
rank_id = 2 | ||
dist_main_prog, dist_startup_prog, dist_params_grads = get_dist_prog( | ||
train_program, startup_program, dist_context, rank_id | ||
) | ||
|
||
resharder = Resharder( | ||
dist_main_prog, | ||
dist_startup_prog, | ||
rank_id, | ||
dist_context, | ||
dist_params_grads, | ||
) | ||
resharder.reshard() | ||
cluster = Cluster() | ||
cluster.gen_default_config_cluster(node_count=1, device_count=8) | ||
for op in dist_main_prog.global_block().ops: | ||
time = calc_time_by_cost_model(op, cluster) | ||
assert time > -1 | ||
|
||
|
||
if __name__ == "__main__": | ||
unittest.main() |