-
Notifications
You must be signed in to change notification settings - Fork 5.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
【auto parallel】Llama decoder 子图验证 (#59580)
* auto parallel:llma attention and mlp * llama mlp、attention dp + mp * remove log * remove log * polish * polish * polish * polish time out * polish time out
- Loading branch information
1 parent
2ac0b31
commit aa3ca77
Showing
4 changed files
with
684 additions
and
0 deletions.
There are no files selected for viewing
300 changes: 300 additions & 0 deletions
300
test/auto_parallel/hybrid_strategy/semi_auto_parallel_for_llama_decoder_dp_mp.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,300 @@ | ||
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import os | ||
import random | ||
|
||
import numpy as np | ||
|
||
import paddle | ||
import paddle.distributed as dist | ||
import paddle.nn.functional as F | ||
from paddle import nn | ||
from paddle.distributed import Replicate, Shard | ||
from paddle.nn.functional.flash_attention import flash_attention | ||
|
||
BATCH_NUM = 4 | ||
BATCH_SIZE = 16 | ||
HIDDEN_SIZE = 1024 | ||
INTERMEDIATE_SIZE = 1024 // 3 * 8 | ||
SEQ_LEN = 128 | ||
N_HEAD = 8 | ||
|
||
|
||
def create_numpy_like_random(name): | ||
return paddle.ParamAttr( | ||
name=name, initializer=paddle.nn.initializer.Uniform(-0.1, 0.1) | ||
) | ||
|
||
|
||
class LlamaAttention(nn.Layer): | ||
def __init__(self, param_prefix="", hidden_size=HIDDEN_SIZE, n_head=N_HEAD): | ||
super().__init__() | ||
weight_attr_0 = create_numpy_like_random(param_prefix + "_0") | ||
weight_attr_1 = create_numpy_like_random(param_prefix + "_1") | ||
self.hidden_size = hidden_size | ||
self.num_heads = n_head | ||
self.head_dim = hidden_size // n_head | ||
self.qkv_proj = nn.Linear(hidden_size, hidden_size * 3, weight_attr_0) | ||
self.o_proj = nn.Linear(hidden_size, hidden_size, weight_attr_1) | ||
|
||
def forward(self, x): | ||
mix_layer = self.qkv_proj(x) | ||
target_shape = [0, 0, self.num_heads, 3 * self.head_dim] | ||
mix_layer = paddle.reshape(mix_layer, target_shape) | ||
mix_layer = paddle.cast(mix_layer, paddle.bfloat16) | ||
query_states, key_states, value_states = paddle.split( | ||
mix_layer, num_or_sections=3, axis=-1 | ||
) | ||
attn_output, _ = flash_attention( | ||
query_states, key_states, value_states, causal=True | ||
) | ||
attn_output = paddle.cast(attn_output, paddle.float32) | ||
attn_output = attn_output.reshape( | ||
[BATCH_SIZE, SEQ_LEN, self.hidden_size] | ||
) | ||
attn_output = self.o_proj(attn_output) | ||
return attn_output | ||
|
||
|
||
class LlamaMlp(nn.Layer): | ||
def __init__( | ||
self, | ||
param_prefix="", | ||
hidden_size=HIDDEN_SIZE, | ||
intermediate_size=INTERMEDIATE_SIZE, | ||
): | ||
super().__init__() | ||
self.hidden_size = hidden_size | ||
self.intermediate_size = intermediate_size | ||
weight_attr_0 = create_numpy_like_random(param_prefix + "_0") | ||
bias_attr_0 = create_numpy_like_random(param_prefix + "_bias_0") | ||
weight_attr_1 = create_numpy_like_random(param_prefix + "_1") | ||
bias_attr_1 = create_numpy_like_random(param_prefix + "_bias_1") | ||
weight_attr_2 = create_numpy_like_random(param_prefix + "_2") | ||
bias_attr_2 = create_numpy_like_random(param_prefix + "_bias_2") | ||
|
||
self.up_proj = nn.Linear( | ||
hidden_size, intermediate_size, weight_attr_0, bias_attr_0 | ||
) | ||
self.gate_proj = nn.Linear( | ||
hidden_size, intermediate_size, weight_attr_1, bias_attr_1 | ||
) | ||
self.down_proj = nn.Linear( | ||
intermediate_size, hidden_size, weight_attr_2, bias_attr_2 | ||
) | ||
|
||
def forward(self, x): | ||
return self.down_proj(F.silu(self.gate_proj(x)) * self.up_proj(x)) | ||
|
||
|
||
class LlamaRMSNorm(nn.Layer): | ||
def __init__(self, hidden_size=HIDDEN_SIZE): | ||
super().__init__() | ||
self.hidden_size = hidden_size | ||
self.weight = paddle.create_parameter( | ||
shape=[self.hidden_size], | ||
dtype=paddle.get_default_dtype(), | ||
default_initializer=nn.initializer.Constant(1.0), | ||
) | ||
self.variance_epsilon = 1.0 | ||
|
||
def forward(self, hidden_states): | ||
with paddle.amp.auto_cast(False): | ||
variance = ( | ||
hidden_states.astype("float32").pow(2).mean(-1, keepdim=True) | ||
) | ||
hidden_states = ( | ||
paddle.rsqrt(variance + self.variance_epsilon) * hidden_states | ||
) | ||
if self.weight.dtype in [paddle.float16, paddle.bfloat16]: | ||
hidden_states = paddle.cast(hidden_states, self.weight.dtype) | ||
return hidden_states * self.weight | ||
|
||
|
||
class LlamaLayerDecoder(nn.Layer): | ||
def __init__( | ||
self, | ||
param_prefix="", | ||
hidden_size=HIDDEN_SIZE, | ||
intermediate_size=INTERMEDIATE_SIZE, | ||
): | ||
super().__init__() | ||
|
||
self.hidden_size = hidden_size | ||
self.intermediate_size = intermediate_size | ||
|
||
self.self_attn = LlamaAttention(param_prefix + "_att", hidden_size) | ||
self.mlp = LlamaMlp(param_prefix + "_mlp") | ||
self.input_layernorm = LlamaRMSNorm(hidden_size) | ||
self.post_attn_layernorm = LlamaRMSNorm(hidden_size) | ||
|
||
def forward(self, x): | ||
residual = x | ||
hidden_states = self.input_layernorm(x) | ||
hidden_states = self.self_attn(hidden_states) | ||
hidden_states = residual + hidden_states | ||
residual = hidden_states | ||
hidden_states = self.post_attn_layernorm(hidden_states) | ||
hidden_states = self.mlp(hidden_states) | ||
hidden_states = residual + hidden_states | ||
return hidden_states | ||
|
||
|
||
class TestLlamaDecoderForSemiAutoParallel: | ||
def __init__(self): | ||
self._dtype = os.getenv("dtype", "float32") | ||
self._backend = os.getenv("backend", "gpu") | ||
self._seed = eval(os.getenv("seed", "2023")) | ||
paddle.set_device(self._backend) | ||
self.init_single_card_net_result() | ||
|
||
def dp_mp_shard_fn(self, layer_name, layer, process_mesh): | ||
col_linear = ["qkv_proj", "gate_proj", "up_proj"] | ||
row_linear = ["o_proj", "down_proj"] | ||
|
||
def contains(a, b): | ||
return b in a | ||
|
||
is_col_linear = any(contains(layer_name, e) for e in col_linear) | ||
is_row_linear = any(contains(layer_name, e) for e in row_linear) | ||
|
||
if is_col_linear: | ||
layer.weight = dist.shard_tensor( | ||
layer.weight, process_mesh, [Replicate(), Shard(1)] | ||
) | ||
layer.bias = dist.shard_tensor( | ||
layer.bias, process_mesh, [Replicate(), Shard(0)] | ||
) | ||
|
||
if is_row_linear: | ||
layer.weight = dist.shard_tensor( | ||
layer.weight, process_mesh, [Replicate(), Shard(0)] | ||
) | ||
|
||
def set_random_seed(self, seed): | ||
random.seed(seed) | ||
np.random.seed(seed) | ||
paddle.seed(seed) | ||
|
||
def init_input_data(self): | ||
input = np.random.random([BATCH_SIZE, SEQ_LEN, HIDDEN_SIZE]).astype( | ||
self._dtype | ||
) | ||
input = paddle.to_tensor(input) | ||
return input | ||
|
||
def init_single_card_net_result(self): | ||
self.set_random_seed(self._seed) | ||
self.base_out, self.base_parameters = self.train_loop( | ||
LlamaLayerDecoder("demo_weight") | ||
) | ||
|
||
def train_loop(self, layer, process_mesh=None, shard_input=False): | ||
# run forward and backward | ||
|
||
opt = paddle.optimizer.SGD( | ||
learning_rate=0.1, parameters=layer.parameters() | ||
) | ||
for _ in range(5): | ||
input = self.init_input_data() | ||
if shard_input: | ||
input = dist.shard_tensor(input, process_mesh, shard_input) | ||
out = layer(input) | ||
loss = paddle.sum(out) | ||
loss.backward() | ||
opt.step() | ||
opt.clear_grad() | ||
return out, layer.parameters() | ||
|
||
def check_tensor_eq(self, a, b, rtol=1e-05, atol=0, verbose=True): | ||
if a is None: | ||
assert b is None | ||
return | ||
np1 = a.astype("float32").numpy() | ||
np2 = b.astype("float32").numpy() | ||
np.testing.assert_allclose( | ||
np1, np2, rtol=rtol, atol=atol, verbose=verbose | ||
) | ||
|
||
def check_dim_mapping(self, output, expected_dim_mapping): | ||
assert ( | ||
output.dist_attr.dims_mapping == expected_dim_mapping | ||
), f"{output.dist_attr.dims_mapping} vs {expected_dim_mapping}" | ||
|
||
def get_shard_check_hook(self, dims_mapping, check_input=False): | ||
def check_func(layer, input, output=None): | ||
if check_input: | ||
if isinstance(input, tuple): | ||
input = input[0] | ||
self.check_dim_mapping(input, dims_mapping) | ||
else: | ||
if isinstance(output, tuple): | ||
output = output[0] | ||
self.check_dim_mapping(output, dims_mapping) | ||
|
||
return check_func | ||
|
||
# python -m paddle.distributed.launch --devices=0,1,2,3 semi_auto_parallel_for_llama_decoder_dp_mp.py | ||
def test_dp_mp(self): | ||
self.set_random_seed(self._seed) | ||
dp_mp_mesh = dist.ProcessMesh([[0, 1], [2, 3]], dim_names=["x", "y"]) | ||
dp_mp_layer = dist.shard_layer( | ||
LlamaLayerDecoder("mp_demo_weight"), dp_mp_mesh, self.dp_mp_shard_fn | ||
) | ||
input_layer_norm_post_hook = self.get_shard_check_hook([0, -1, -1]) | ||
attn_pre_hook = self.get_shard_check_hook([0, -1, -1], True) | ||
attn_post_hook = self.get_shard_check_hook([0, -1, -1]) | ||
post_attn_layer_norm_pre_hook = self.get_shard_check_hook( | ||
[0, -1, -1], True | ||
) | ||
post_attn_layer_norm_post_hook = self.get_shard_check_hook([0, -1, -1]) | ||
mlp_pre_hook = self.get_shard_check_hook([0, -1, -1], True) | ||
mlp_post_hook = self.get_shard_check_hook([0, -1, -1]) | ||
|
||
dp_mp_layer.input_layernorm.register_forward_post_hook( | ||
input_layer_norm_post_hook | ||
) | ||
|
||
dp_mp_layer.self_attn.register_forward_pre_hook(attn_pre_hook) | ||
dp_mp_layer.self_attn.register_forward_post_hook(attn_post_hook) | ||
|
||
dp_mp_layer.post_attn_layernorm.register_forward_pre_hook( | ||
post_attn_layer_norm_pre_hook | ||
) | ||
dp_mp_layer.post_attn_layernorm.register_forward_post_hook( | ||
post_attn_layer_norm_post_hook | ||
) | ||
|
||
dp_mp_layer.mlp.register_forward_pre_hook(mlp_pre_hook) | ||
dp_mp_layer.mlp.register_forward_post_hook(mlp_post_hook) | ||
|
||
dp_mp_out, dp_mp_parameters = self.train_loop( | ||
dp_mp_layer, dp_mp_mesh, shard_input=[Shard(0), Replicate()] | ||
) | ||
self.check_tensor_eq(dp_mp_out, self.base_out) | ||
for param, param_base in zip(dp_mp_parameters, self.base_parameters): | ||
self.check_tensor_eq(param, param_base) | ||
self.check_tensor_eq(param.grad, param_base.grad) | ||
|
||
def run_test_case(self): | ||
if self._backend == "gpu": | ||
cuda_version_main = int(paddle.version.cuda().split(".")[0]) | ||
device_prop_main = paddle.device.cuda.get_device_capability()[0] | ||
if cuda_version_main >= 11 and device_prop_main >= 8: | ||
self.test_dp_mp() | ||
|
||
|
||
if __name__ == '__main__': | ||
TestLlamaDecoderForSemiAutoParallel().run_test_case() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.