Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add xpu sgd & momentum #27728

Merged
merged 7 commits into from
Oct 13, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
62 changes: 62 additions & 0 deletions paddle/fluid/operators/optimizers/momentum_op_xpu.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,62 @@
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include <string>
#include "paddle/fluid/operators/optimizers/sgd_op.h"
namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class MomentumOpXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
T mu = static_cast<T>(ctx.Attr<float>("mu"));
bool use_nesterov = ctx.Attr<bool>("use_nesterov");

auto learning_rate = ctx.Input<framework::Tensor>("LearningRate");
auto param = ctx.Input<framework::Tensor>("Param");
auto param_out = ctx.Output<framework::Tensor>("ParamOut");
auto* velocity = ctx.Input<framework::Tensor>("Velocity");
auto velocity_out = ctx.Output<framework::Tensor>("VelocityOut");
param_out->mutable_data<T>(ctx.GetPlace());
velocity_out->mutable_data<T>(ctx.GetPlace());
auto* lr = learning_rate->data<T>();

auto* grad_var = ctx.InputVar("Grad");
PADDLE_ENFORCE_EQ(grad_var->IsType<framework::LoDTensor>(), true,
platform::errors::PermissionDenied(
"Unsupported Variable Type of Param & Grad in "
"MomentumOp-XPU. Excepted "
"LodTensor, But received [%s] and [%s]",
paddle::framework::ToTypeName(grad_var->Type())));

auto grad = ctx.Input<framework::Tensor>("Grad");

auto& dev_ctx = ctx.template device_context<DeviceContext>();
int r = xpu::momentum(
dev_ctx.x_context(), param->data<float>(), velocity->data<float>(),
grad->data<float>(), lr, use_nesterov, mu, param_out->numel(),
param_out->data<float>(), velocity_out->data<float>());
PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
platform::errors::PermissionDenied("XPU kernel error!"));
}
};
} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(
momentum,
ops::MomentumOpXPUKernel<paddle::platform::XPUDeviceContext, float>);
#endif
79 changes: 79 additions & 0 deletions paddle/fluid/operators/optimizers/sgd_op_xpu.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,79 @@
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/operators/optimizers/sgd_op.h"
#include <string>
namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class SGDOpXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
const auto *learning_rate = ctx.Input<framework::Tensor>("LearningRate");

const auto *param_var = ctx.InputVar("Param");
const auto *grad_var = ctx.InputVar("Grad");

if (param_var->IsType<framework::LoDTensor>() &&
grad_var->IsType<framework::LoDTensor>()) {
const auto *param = ctx.Input<framework::Tensor>("Param");
auto *param_out = ctx.Output<framework::Tensor>("ParamOut");
// Actually, all tensors are LoDTensor except SelectedRows.
const auto *grad = ctx.Input<framework::Tensor>("Grad");
auto sz = param_out->numel();
PADDLE_ENFORCE_EQ(param->numel(), sz,
platform::errors::InvalidArgument(
"The input tensor Param's numel of SgdOp "
"should be equal with ParamOut's numel. "
"But received Param's "
"numel = [%s], ParamOut's numel = [%s]",
param->numel(), sz));
PADDLE_ENFORCE_EQ(grad->numel(), sz,
platform::errors::InvalidArgument(
"The input tensor Grad's numel of SgdOp "
"should be equal with ParamOut's numel. "
"But received Grad's "
"numel = [%s], ParamOut's numel = [%s]",
grad->numel(), sz));

const T *lr = learning_rate->data<T>();
const T *param_data = param->data<T>();
const T *grad_data = grad->data<T>();
T *out_data = param_out->mutable_data<T>(ctx.GetPlace());

auto &dev_ctx = ctx.template device_context<DeviceContext>();
int r = xpu::sgd(dev_ctx.x_context(), sz, grad_data, param_data, lr,
out_data);
PADDLE_ENFORCE_EQ(
r, xpu::Error_t::SUCCESS,
platform::errors::PermissionDenied("XPU kernel error!"));
} else {
PADDLE_ENFORCE_EQ(false, true,
platform::errors::PermissionDenied(
"Unsupported Variable Type of Param & Grad in "
"SgdOp-XPU. Excepted "
"LodTensor, But received [%s] and [%s]",
paddle::framework::ToTypeName(param_var->Type())));
}
}
};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(
sgd, ops::SGDOpXPUKernel<paddle::platform::XPUDeviceContext, float>);
#endif
68 changes: 68 additions & 0 deletions python/paddle/fluid/tests/unittests/xpu/test_momentum_op_xpu.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,68 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
import sys
import os
sys.path.append("..")
from op_test import OpTest
import paddle
from paddle.fluid import core
from paddle.fluid.op import Operator


class TestMomentumOp1(OpTest):
def setUp(self):
self.op_type = "momentum"
self.dtype = np.float32
self.init_dtype()

param = np.random.random((123, 321)).astype(self.dtype)
grad = np.random.random((123, 321)).astype(self.dtype)
velocity = np.zeros((123, 321)).astype(self.dtype)
learning_rate = np.array([0.001]).astype(self.dtype)
mu = 0.0001
use_nesterov = False

self.inputs = {
'Param': param,
'Grad': grad,
'Velocity': velocity,
'LearningRate': learning_rate
}

self.attrs = {'mu': mu}

velocity_out = mu * velocity + grad
if use_nesterov:
param_out = param - grad * learning_rate - \
velocity_out * mu * learning_rate
else:
param_out = param - learning_rate * velocity_out

self.outputs = {'ParamOut': param_out, 'VelocityOut': velocity_out}

def init_dtype(self):
pass

def test_check_output_with_place(self):
self.check_output_with_place(paddle.XPUPlace(0))


if __name__ == "__main__":
paddle.enable_static()
unittest.main()
75 changes: 75 additions & 0 deletions python/paddle/fluid/tests/unittests/xpu/test_sgd_op_xpu.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
import sys
import os
sys.path.append("..")
from op_test import OpTest
import paddle
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid.op import Operator


class TestSGDOp(OpTest):
def setUp(self):
self.op_type = "sgd"
self.conf()
w = np.random.random((self.h, self.w)).astype("float32")
g = np.random.random((self.h, self.w)).astype("float32")
lr = np.array([0.1]).astype("float32")

self.inputs = {'Param': w, 'Grad': g, 'LearningRate': lr}
self.outputs = {'ParamOut': w - lr * g}

def conf(self):
self.h = 102
self.w = 105

def test_check_output_with_place(self):
self.check_output_with_place(paddle.XPUPlace(0))


class TestSGDOpCase8X(TestSGDOp):
def conf(self):
self.h = 10
self.w = 64


class TestSGDOpWithLargeInput(unittest.TestCase):
def runTest(self):
data = fluid.layers.fill_constant(shape=[1], value=128, dtype='int64')
label = fluid.layers.fill_constant(
shape=[1, 150], value=0.5, dtype='float32')
emb = fluid.embedding(input=data, size=(10000, 150), dtype='float32')
out = fluid.layers.l2_normalize(x=emb, axis=-1)

cost = fluid.layers.square_error_cost(input=out, label=label)
avg_cost = fluid.layers.mean(cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
sgd_optimizer.minimize(avg_cost)

place = paddle.XPUPlace(0)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
result = exe.run(fluid.default_main_program(), fetch_list=[avg_cost])


if __name__ == "__main__":
paddle.enable_static()
unittest.main()