Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[PaddlePaddle Hackathon] add AlexNet #36058

Merged
merged 19 commits into from
Oct 13, 2021
Merged
4 changes: 3 additions & 1 deletion python/paddle/tests/test_pretrained_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -52,7 +52,9 @@ def infer(self, arch):
np.testing.assert_allclose(res['dygraph'], res['static'])

def test_models(self):
arches = ['mobilenet_v1', 'mobilenet_v2', 'resnet18', 'vgg16']
arches = [
'mobilenet_v1', 'mobilenet_v2', 'resnet18', 'vgg16', 'alexnet'
]
for arch in arches:
self.infer(arch)

Expand Down
4 changes: 3 additions & 1 deletion python/paddle/tests/test_vision_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np

Expand Down Expand Up @@ -71,6 +70,9 @@ def test_resnet101(self):
def test_resnet152(self):
self.models_infer('resnet152')

def test_alexnet(self):
self.models_infer('alexnet')

def test_vgg16_num_classes(self):
vgg16 = models.__dict__['vgg16'](pretrained=False, num_classes=10)

Expand Down
2 changes: 2 additions & 0 deletions python/paddle/vision/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,6 +44,8 @@
from .models import vgg16 # noqa: F401
from .models import vgg19 # noqa: F401
from .models import LeNet # noqa: F401
from .models import AlexNet # noqa: F401
from .models import alexnet # noqa: F401
from .transforms import BaseTransform # noqa: F401
from .transforms import Compose # noqa: F401
from .transforms import Resize # noqa: F401
Expand Down
6 changes: 5 additions & 1 deletion python/paddle/vision/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,8 @@
from .vgg import vgg16 # noqa: F401
from .vgg import vgg19 # noqa: F401
from .lenet import LeNet # noqa: F401
from .alexnet import AlexNet # noqa: F401
from .alexnet import alexnet # noqa: F401

__all__ = [ #noqa
'ResNet',
Expand All @@ -45,5 +47,7 @@
'mobilenet_v1',
'MobileNetV2',
'mobilenet_v2',
'LeNet'
'LeNet',
'AlexNet',
'alexnet'
]
192 changes: 192 additions & 0 deletions python/paddle/vision/models/alexnet.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,192 @@
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import paddle
import paddle.nn as nn
import paddle.nn.functional as F

from paddle.nn import Linear, Dropout, ReLU
from paddle.nn import Conv2D, MaxPool2D
from paddle.nn.initializer import Uniform
from paddle.fluid.param_attr import ParamAttr
from paddle.utils.download import get_weights_path_from_url

model_urls = {
"alexnet": (
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/AlexNet_pretrained.pdparams",
"7f0f9f737132e02732d75a1459d98a43", )
}

__all__ = []


class ConvPoolLayer(nn.Layer):
def __init__(self,
input_channels,
output_channels,
filter_size,
stride,
padding,
stdv,
groups=1,
act=None):
super(ConvPoolLayer, self).__init__()

self.relu = ReLU() if act == "relu" else None

self._conv = Conv2D(
in_channels=input_channels,
out_channels=output_channels,
kernel_size=filter_size,
stride=stride,
padding=padding,
groups=groups,
weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)),
bias_attr=ParamAttr(initializer=Uniform(-stdv, stdv)))
self._pool = MaxPool2D(kernel_size=3, stride=2, padding=0)

def forward(self, inputs):
x = self._conv(inputs)
if self.relu is not None:
x = self.relu(x)
x = self._pool(x)
return x


class AlexNet(nn.Layer):
"""AlexNet model from
`"ImageNet Classification with Deep Convolutional Neural Networks"
<https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf>`_

Args:
num_classes (int): Output dim of last fc layer. Default: 1000.

Examples:
.. code-block:: python

from paddle.vision.models import AlexNet

alexnet = AlexNet()

"""

def __init__(self, num_classes=1000):
super(AlexNet, self).__init__()
self.num_classes = num_classes
stdv = 1.0 / math.sqrt(3 * 11 * 11)
self._conv1 = ConvPoolLayer(3, 64, 11, 4, 2, stdv, act="relu")
stdv = 1.0 / math.sqrt(64 * 5 * 5)
self._conv2 = ConvPoolLayer(64, 192, 5, 1, 2, stdv, act="relu")
stdv = 1.0 / math.sqrt(192 * 3 * 3)
self._conv3 = Conv2D(
192,
384,
3,
stride=1,
padding=1,
weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)),
bias_attr=ParamAttr(initializer=Uniform(-stdv, stdv)))
stdv = 1.0 / math.sqrt(384 * 3 * 3)
self._conv4 = Conv2D(
384,
256,
3,
stride=1,
padding=1,
weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)),
bias_attr=ParamAttr(initializer=Uniform(-stdv, stdv)))
stdv = 1.0 / math.sqrt(256 * 3 * 3)
self._conv5 = ConvPoolLayer(256, 256, 3, 1, 1, stdv, act="relu")

if self.num_classes > 0:
stdv = 1.0 / math.sqrt(256 * 6 * 6)
self._drop1 = Dropout(p=0.5, mode="downscale_in_infer")
self._fc6 = Linear(
in_features=256 * 6 * 6,
out_features=4096,
weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)),
bias_attr=ParamAttr(initializer=Uniform(-stdv, stdv)))

self._drop2 = Dropout(p=0.5, mode="downscale_in_infer")
self._fc7 = Linear(
in_features=4096,
out_features=4096,
weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)),
bias_attr=ParamAttr(initializer=Uniform(-stdv, stdv)))
self._fc8 = Linear(
in_features=4096,
out_features=num_classes,
weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)),
bias_attr=ParamAttr(initializer=Uniform(-stdv, stdv)))

def forward(self, inputs):
x = self._conv1(inputs)
x = self._conv2(x)
x = self._conv3(x)
x = F.relu(x)
x = self._conv4(x)
x = F.relu(x)
x = self._conv5(x)

if self.num_classes > 0:
x = paddle.flatten(x, start_axis=1, stop_axis=-1)
x = self._drop1(x)
x = self._fc6(x)
x = F.relu(x)
x = self._drop2(x)
x = self._fc7(x)
x = F.relu(x)
x = self._fc8(x)

return x


def _alexnet(arch, pretrained, **kwargs):
model = AlexNet(**kwargs)

if pretrained:
assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format(
arch)
weight_path = get_weights_path_from_url(model_urls[arch][0],
model_urls[arch][1])

param = paddle.load(weight_path)
model.load_dict(param)

return model


def alexnet(pretrained=False, **kwargs):
"""AlexNet model

Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.

Examples:
.. code-block:: python

from paddle.vision.models import alexnet

# build model
model = alexnet()

# build model and load imagenet pretrained weight
# model = alexnet(pretrained=True)
"""
return _alexnet('alexnet', pretrained, **kwargs)