Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added fp32 / bf16 forward and backward elementwise_div_mkldnn operator #36158

Merged
147 changes: 147 additions & 0 deletions paddle/fluid/operators/elementwise/mkldnn/elementwise_div_mkldnn_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,147 @@
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
This conversation was marked as resolved.
Show resolved Hide resolved

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/elementwise/mkldnn/elementwise_mkldnn_op.h"

namespace paddle {
namespace framework {
class ExecutionContext;
} // namespace framework
namespace platform {
class CPUDeviceContext;
struct CPUPlace;
} // namespace platform
} // namespace paddle

namespace paddle {
namespace operators {
template <typename T>
class EltwiseDivMKLDNNGradKernel : public ElemwiseGradKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
ElemwiseGradKernel<T>::Compute(ctx);

auto& dev_ctx =
ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
This conversation was marked as resolved.
Show resolved Hide resolved
const auto& mkldnn_engine = dev_ctx.GetEngine();

auto* y = ctx.Input<framework::Tensor>("Y");
auto* out = ctx.Input<framework::Tensor>("Out");
auto* dout = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
auto* dx = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
auto* dy = ctx.Output<framework::Tensor>(framework::GradVarName("Y"));
int axis = ctx.Attr<int>("axis");

auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();

if (dx) {
// dx = dout / y

platform::BinaryMKLDNNHandler<T> handler(
dnnl::algorithm::binary_div, axis, mkldnn_engine, ctx.GetPlace(),
dout, y, dx, 1.0f, 1.0f, 1.0f);

const auto src_dout_memory = handler.AcquireSrcMemory(dout);
const auto src_y_memory = handler.AcquireSecondSrcMemory(y);
const auto dst_dx_memory = handler.AcquireDstMemory(dx);

const auto binary_prim = handler.AcquireForwardPrimitive();

const std::unordered_map<int, dnnl::memory> args = {
{DNNL_ARG_SRC_0, *src_dout_memory},
{DNNL_ARG_SRC_1, *src_y_memory},
{DNNL_ARG_DST, *dst_dx_memory}};

binary_prim->execute(astream, args);
astream.wait();

dx->set_layout(framework::DataLayout::kMKLDNN);
dx->set_format(platform::GetMKLDNNFormat(*dst_dx_memory));
}

if (dy) {
// dy = -dout * out / y

platform::BinaryMKLDNNHandler<T> y_handler(
dnnl::algorithm::binary_div, axis, mkldnn_engine, ctx.GetPlace(), y,
y, nullptr, 1.0f, 1.0f, 1.0f);

const auto y_memory = y_handler.AcquireSrcMemory(y);

dnnl::post_ops po;
po.append_binary(dnnl::algorithm::binary_div, y_memory->get_desc());

platform::BinaryMKLDNNHandler<T> handler(
dnnl::algorithm::binary_mul, axis, mkldnn_engine, ctx.GetPlace(),
dout, out, nullptr, -1.0f, 1.0f, 1.0f, po);

const auto src_dout_memory = handler.AcquireSrcMemory(dout);
const auto src_out_memory = handler.AcquireSecondSrcMemory(out);

// If broadcasting is in use then let's write to temporary
// buffer allocated by oneDNN
const auto dst_dy_memory = (dout->dims() == dy->dims())
? handler.AcquireDstMemory(dy)
: handler.AcquireDstMemory();

const auto binary_prim = handler.AcquireForwardPrimitive();

const std::unordered_map<int, dnnl::memory> args = {
{DNNL_ARG_SRC_0, *src_dout_memory},
{DNNL_ARG_SRC_1, *src_out_memory},
{DNNL_ARG_DST, *dst_dy_memory},
{DNNL_ARG_ATTR_MULTIPLE_POST_OP(0) | DNNL_ARG_SRC_1, *y_memory}};

binary_prim->execute(astream, args);
astream.wait();

dy->set_layout(framework::DataLayout::kMKLDNN);

// Reduction is needed for broadcasting scenario
if (dout->dims() != dy->dims()) {
platform::ReductionMKLDNNHandler<T> handler_sum(
dnnl::algorithm::reduction_sum, 0.0f, 0.0f, mkldnn_engine,
ctx.GetPlace(), dout, dy, CalculateBroadcastedDims(dout, dy));
auto dy_memory_p = handler_sum.AcquireDstMemory(dy);
auto reduction_p = handler_sum.AcquireForwardPrimitive();

// As source we use mem object with results from binary operation
reduction_p->execute(astream, {{DNNL_ARG_SRC, *dst_dy_memory},
{DNNL_ARG_DST, *dy_memory_p}});
astream.wait();
dy->set_format(
platform::GetMKLDNNFormat(dy_memory_p->get_desc().reshape(
paddle::framework::vectorize<int64_t>(dy->dims()))));
This conversation was marked as resolved.
Show resolved Hide resolved

} else {
dy->set_format(platform::GetMKLDNNFormat(*dst_dy_memory));
}
}
}
};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;

// TODO(piotrekobi) add int8, uint8 support
REGISTER_OP_KERNEL(elementwise_div, MKLDNN, paddle::platform::CPUPlace,
ops::EltwiseMKLDNNKernel<float, dnnl::algorithm::binary_div>,
ops::EltwiseMKLDNNKernel<paddle::platform::bfloat16,
dnnl::algorithm::binary_div>)

REGISTER_OP_KERNEL(elementwise_div_grad, MKLDNN, paddle::platform::CPUPlace,
ops::EltwiseDivMKLDNNGradKernel<paddle::platform::bfloat16>,
ops::EltwiseDivMKLDNNGradKernel<float>)
15 changes: 10 additions & 5 deletions paddle/fluid/platform/mkldnn_reuse.h
Original file line number Diff line number Diff line change
Expand Up @@ -799,7 +799,8 @@ class BinaryMKLDNNHandler
BinaryMKLDNNHandler(const dnnl::algorithm algo, const int axis,
const mkldnn::engine engine, platform::Place cpu_place,
const Tensor* x, const Tensor* y, Tensor* z,
float scale_x, float scale_y, float scale_z)
float scale_x, float scale_y, float scale_z,
const dnnl::post_ops& post_ops = dnnl::post_ops())
: platform::MKLDNNHandlerNoCachingT<T, dnnl::binary>(engine, cpu_place) {
PADDLE_ENFORCE_EQ(
x->layout(), DataLayout::kMKLDNN,
Expand Down Expand Up @@ -848,10 +849,11 @@ class BinaryMKLDNNHandler
MKLDNNMemoryFormat::any);

auto attributes = CreateAttributes(algo, scale_x, scale_y, scale_z);
attributes.set_post_ops(post_ops);

this->AcquireForwardPrimitiveDescriptor(attributes, algo, src0_md, src1_md,
dst_md);
}

std::shared_ptr<mkldnn::memory> AcquireSecondSrcMemory(
const framework::Tensor* input) {
const T* input_data = input->data<T>();
Expand Down Expand Up @@ -1332,15 +1334,18 @@ class ConvMKLDNNTemplateHandler : public MKLDNNHandler {
int mask = output_shift_scale.size() > 1 ? 1 << 1 : 0;
conv_attr.set_output_scales(mask, output_shift_scale);
}
// Fusion with Elementwise layer relies on adding a sum post-operation with
// the scale parameter. It is assumed that when fuse_residual_connection is
// Fusion with Elementwise layer relies on adding a sum post-operation
This conversation was marked as resolved.
Show resolved Hide resolved
// with
// the scale parameter. It is assumed that when fuse_residual_connection
// is
// true, the output tensor contains the data coming from residual
// connection. The result of this post_op is:
// Output = scale * Output + Conv_Out.
if (fuse_residual_conn) {
post_operations.append_sum(sum_scale);
}
// Fusion with ReLU layer is executed through the PostOps feature. Create a
// Fusion with ReLU layer is executed through the PostOps feature. Create
// a
This conversation was marked as resolved.
Show resolved Hide resolved
// PostOps object and configure it to execute an eltwise relu operation.
if (fuse_activation == "relu" || fuse_activation == "leaky_relu") {
constexpr float scale = 1.0f;
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,179 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import unittest
import numpy as np
from paddle import enable_static
from paddle.fluid.tests.unittests.op_test import OpTest, OpTestTool, convert_float_to_uint16
from paddle.fluid.framework import _current_expected_place
import paddle.fluid.core as core


@OpTestTool.skip_if(not (isinstance(_current_expected_place(), core.CPUPlace)),
"GPU is not supported")
class TestMKLDNNElementwiseDivOp(OpTest):
def setUp(self):
self.op_type = "elementwise_div"
self.init_dtype()
self.init_input_output()
self.init_kernel_type()
self.init_axis()
self.inputs = {
'X': OpTest.np_dtype_to_fluid_dtype(self.x),
'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
}
self.attrs = {'axis': self.axis, 'use_mkldnn': self.use_mkldnn}
self.outputs = {'Out': self.out}

def init_input_output(self):
self.x = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype)
self.y = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype)
self.out = np.divide(self.x, self.y)

def test_check_grad_normal(self):
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.05)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

5% of relative error is quite a lot, is oneDNN's precision really that bad?

Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The original elementwise_div tests also used 5%, so that's what I sticked with. In reality, the errors are just over 1%. I've changed the relative error to 2% to make this more clear.


def test_check_grad_ignore_x(self):
self.check_grad(
['Y'], 'Out', no_grad_set=set("X"), max_relative_error=0.05)

def test_check_grad_ignore_y(self):
self.check_grad(
['X'], 'Out', no_grad_set=set('Y'), max_relative_error=0.05)

def init_axis(self):
self.axis = -1

def init_kernel_type(self):
self.use_mkldnn = True

def init_dtype(self):
self.dtype = np.float32

def test_check_output(self):
self.check_output()


class TestMKLDNNElementwiseDivOp2(TestMKLDNNElementwiseDivOp):
def init_input_output(self):
self.x = np.random.uniform(0.1, 1, [100]).astype(self.dtype)
self.y = np.random.uniform(0.1, 1, [100]).astype(self.dtype)
self.out = np.divide(self.x, self.y)


class TestMKLDNNElementwiseDivOp3(TestMKLDNNElementwiseDivOp):
def init_input_output(self):
self.x = np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype(self.dtype)
self.y = np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype(self.dtype)
self.out = np.divide(self.x, self.y)


class TestMKLDNNElementwiseDivOp4(TestMKLDNNElementwiseDivOp):
def init_input_output(self):
self.x = np.random.uniform(1, 2, [2, 3, 4, 32]).astype(self.dtype)
self.y = np.random.uniform(1, 2, [4, 32]).astype(self.dtype)
self.out = np.divide(self.x, self.y)

def test_check_grad_normal(self):
pass
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Why backward pass is not checked in this scenario?

Copy link
Author

@ghost ghost Oct 1, 2021

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Backward pass doesn't work correctly with broadcast for the elementwise_mkldnn mul and div operators. I've consulted this with @jczaja and he said that these tests can be disabled for now. I've added a comment to notify the fact that this should be looked into.


def test_check_grad_ignore_x(self):
pass


class TestMKLDNNElementwiseDivOp5(TestMKLDNNElementwiseDivOp):
def init_input_output(self):
self.x = np.random.uniform(1, 2, [2, 3, 4, 100]).astype(self.dtype)
self.y = np.random.uniform(1, 2, [100]).astype(self.dtype)
self.out = np.divide(self.x, self.y)

def test_check_grad_normal(self):
pass

def test_check_grad_ignore_x(self):
pass


@OpTestTool.skip_if_not_cpu_bf16()
class TestBf16(TestMKLDNNElementwiseDivOp):
def setUp(self):
self.op_type = "elementwise_div"
self.init_dtype()
self.init_input_output()
self.init_kernel_type()
self.init_axis()

self.x_bf16 = convert_float_to_uint16(self.x)
self.y_bf16 = convert_float_to_uint16(self.y)
self.inputs = {'X': self.x_bf16, 'Y': self.y_bf16}
self.attrs = {'axis': self.axis, 'use_mkldnn': self.use_mkldnn}
self.outputs = {'Out': convert_float_to_uint16(self.out)}

def init_dtype(self):
self.dtype = np.float32
self.mkldnn_data_type = "bfloat16"

def init_input_output(self):
self.x = np.random.uniform(0.1, 1, [100]).astype(self.dtype)
self.y = np.random.uniform(0.1, 1, [100]).astype(self.dtype)
self.out = np.divide(self.x, self.y)

def test_check_output(self):
self.check_output_with_place(core.CPUPlace())

def test_check_grad_normal(self):
self.check_grad_with_place(
core.CPUPlace(), ["X", "Y"],
"Out",
user_defined_grads=[
np.divide(self.x, self.y), np.divide(
(np.multiply(-self.x, self.x)), np.multiply(self.y, self.y))
],
user_defined_grad_outputs=[self.x_bf16])

def test_check_grad_ignore_x(self):
self.check_grad_with_place(
core.CPUPlace(), ["Y"],
"Out",
user_defined_grads=[
np.divide((np.multiply(-self.x, self.y)),
np.multiply(self.y, self.y))
],
user_defined_grad_outputs=[self.y_bf16])

def test_check_grad_ignore_y(self):
self.check_grad_with_place(
core.CPUPlace(), ["X"],
"Out",
user_defined_grads=[np.divide(self.x, self.y)],
user_defined_grad_outputs=[self.x_bf16])


class TestBf16Broadcasting(TestBf16):
def init_input_output(self):
self.x = np.random.uniform(1, 2, [2, 3, 4, 100]).astype(self.dtype)
self.y = np.random.uniform(1, 2, [100]).astype(self.dtype)
self.out = np.subtract(self.x, self.y)

def test_check_grad_normal(self):
pass

def test_check_grad_ignore_x(self):
pass


if __name__ == '__main__':
enable_static()
unittest.main()
1 change: 1 addition & 0 deletions tools/static_mode_white_list.py
Original file line number Diff line number Diff line change
Expand Up @@ -610,6 +610,7 @@
'test_dequantize_mkldnn_op',
'test_elementwise_add_mkldnn_op',
'test_elementwise_add_bf16_mkldnn_op',
'test_elementwise_div_mkldnn_op',
'test_elementwise_sub_mkldnn_op',
'test_elementwise_mul_mkldnn_op',
'test_elementwise_mul_bf16_mkldnn_op',
Expand Down