Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[NPU] add reduce_min #39019

Merged
merged 1 commit into from
Feb 10, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
118 changes: 118 additions & 0 deletions paddle/fluid/operators/reduce_ops/reduce_min_op_npu.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,118 @@
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/reduce_ops/reduce_min_max_op.h"
#include "paddle/fluid/platform/device/npu/npu_op_runner.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename DeviceContext, typename T>
class ReduceMinNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<Tensor>("X");
auto* out = ctx.Output<Tensor>("Out");
auto dims = ctx.Attr<std::vector<int>>("dim");
bool keep_dim = ctx.Attr<bool>("keep_dim");
bool reduce_all = ctx.Attr<bool>("reduce_all");
int out_dtype = ctx.Attr<int>("out_dtype");

auto place = ctx.GetPlace();

framework::Tensor cast_out(x->type());
cast_out.Resize(out->dims());
cast_out.mutable_data<T>(place);

auto cast_out_dtype = x->type();
if (out_dtype != -1) {
cast_out_dtype = static_cast<framework::proto::VarType::Type>(out_dtype);
}

if (x->type() != cast_out_dtype) {
if (cast_out_dtype == framework::proto::VarType::FP32) {
out->mutable_data<float>(place);
} else if (cast_out_dtype == framework::proto::VarType::FP16) {
out->mutable_data<paddle::platform::float16>(place);
} else if (cast_out_dtype == framework::proto::VarType::INT16) {
out->mutable_data<int16_t>(place);
} else if (cast_out_dtype == framework::proto::VarType::INT32) {
out->mutable_data<int32_t>(place);
} else if (cast_out_dtype == framework::proto::VarType::INT64) {
out->mutable_data<int64_t>(place);
} else if (cast_out_dtype == framework::proto::VarType::FP64) {
out->mutable_data<double>(place);
} else if (cast_out_dtype == framework::proto::VarType::BOOL) {
out->mutable_data<bool>(place);
}
} else {
out->ShareDataWith(cast_out);
}

framework::NPUAttributeMap attr_input = {{"axes", dims},
{"keep_dims", keep_dim}};

if (reduce_all) {
std::vector<int> dim_vec;
for (int i = 0; i < x->dims().size(); i++) {
dim_vec.push_back(i);
}

attr_input = {{"axes", dim_vec}, {"keep_dims", keep_dim}};
}

const auto& dev_ctx =
ctx.template device_context<paddle::platform::NPUDeviceContext>();
if (x->type() == framework::proto::VarType::INT64) {
auto op_func = [](const std::vector<Tensor>& inputs,
const std::vector<Tensor>& outputs,
const NPUAttributeMap& attrs,
const platform::NPUDeviceContext& dev_ctx) {
const auto& runner =
NpuOpRunner("ReduceMinD", {inputs[0]}, {outputs[0]}, attrs);
runner.Run(dev_ctx.stream());
};

NpuOpRunner::TypeAdapter({*x}, {cast_out}, attr_input, dev_ctx, op_func,
{framework::proto::VarType::INT32},
{framework::proto::VarType::INT32});
} else {
const auto& runner =
NpuOpRunner("ReduceMinD", {*x}, {cast_out}, attr_input);
runner.Run(dev_ctx.stream());
}

if (x->type() != cast_out_dtype) {
auto dst_dtype = ConvertToNpuDtype(cast_out_dtype);
const auto& runner_cast =
NpuOpRunner("Cast", {cast_out}, {*out},
{{"dst_type", static_cast<int>(dst_dtype)}});
runner_cast.Run(dev_ctx.stream());
}
}
};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_NPU_KERNEL(
reduce_min, ops::ReduceMinNPUKernel<plat::NPUDeviceContext, float>,
ops::ReduceMinNPUKernel<plat::NPUDeviceContext, plat::float16>,
#ifdef PADDLE_WITH_ASCEND_INT64
ops::ReduceMinNPUKernel<plat::NPUDeviceContext, int64_t>,
#endif
ops::ReduceMinNPUKernel<plat::NPUDeviceContext, int>);
Loading