Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Phi] Move determinant op kernel into phi #40539

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 0 additions & 8 deletions paddle/fluid/operators/determinant_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -168,14 +168,6 @@ REGISTER_OPERATOR(determinant, ops::DeterminantOp, ops::DeterminantOpMaker,

REGISTER_OPERATOR(determinant_grad, ops::DeterminantGradOp)

REGISTER_OP_CPU_KERNEL(determinant,
ops::DeterminantKernel<plat::CPUDeviceContext, float>,
ops::DeterminantKernel<plat::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
determinant_grad, ops::DeterminantGradKernel<plat::CPUDeviceContext, float>,
ops::DeterminantGradKernel<plat::CPUDeviceContext, double>);

REGISTER_OPERATOR(slogdeterminant, ops::SlogDeterminantOp,
ops::SlogDeterminantOpMaker,
ops::SlogDeterminantGradOpMaker<paddle::framework::OpDesc>,
Expand Down
8 changes: 0 additions & 8 deletions paddle/fluid/operators/determinant_op.cu
Original file line number Diff line number Diff line change
Expand Up @@ -17,14 +17,6 @@ limitations under the License. */

namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_CUDA_KERNEL(
determinant, ops::DeterminantKernel<plat::CUDADeviceContext, float>,
ops::DeterminantKernel<plat::CUDADeviceContext, double>);

REGISTER_OP_CUDA_KERNEL(
determinant_grad,
ops::DeterminantGradKernel<plat::CUDADeviceContext, float>,
ops::DeterminantGradKernel<plat::CUDADeviceContext, double>);

REGISTER_OP_CUDA_KERNEL(
slogdeterminant, ops::SlogDeterminantKernel<plat::CUDADeviceContext, float>,
Expand Down
237 changes: 8 additions & 229 deletions paddle/fluid/operators/determinant_op.h
Original file line number Diff line number Diff line change
Expand Up @@ -23,10 +23,13 @@
#include "paddle/fluid/platform/for_range.h"
#include "paddle/phi/kernels/complex_kernel.h"
#include "paddle/phi/kernels/full_kernel.h"
#include "paddle/phi/kernels/funcs/common_shape.h"
#include "paddle/phi/kernels/funcs/diag_functor.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/funcs/matrix_inverse.h"
#include "paddle/phi/kernels/funcs/unsqueeze.h"
#include "paddle/phi/kernels/impl/determinant_grad_kernel_impl.h"
#include "paddle/phi/kernels/impl/determinant_kernel_impl.h"
#include "paddle/phi/kernels/math_kernel.h"
#include "paddle/phi/kernels/matmul_kernel.h"
#include "paddle/phi/kernels/transpose_kernel.h"
Expand All @@ -40,232 +43,6 @@ T sign(T val) {
return static_cast<T>(T(0) < val) - (val < T(0));
}

template <typename T>
class EigenMatrix {};

template <>
class EigenMatrix<float> {
public:
using MatrixType = Eigen::MatrixXf;
};

template <>
class EigenMatrix<double> {
public:
using MatrixType = Eigen::MatrixXd;
};

inline int64_t GetBatchCount(const framework::DDim dims) {
int64_t batch_count = 1;
auto dim_size = dims.size();
PADDLE_ENFORCE_GE(
dim_size, 2,
platform::errors::InvalidArgument(
"the input matrix dimension size should greater than 2."));

// Cumulative multiplying each dimension until the last 2 to get the batch
// count,
// for example a tensor with shape [3,3,3,3], the batch count of matrices is
// 9.
for (int64_t i = 0; i < dims.size() - 2; i++) {
batch_count *= dims[i];
}

return batch_count;
}

template <typename T>
struct DeterminantFunctor {
void operator()(const Tensor& input, const framework::ExecutionContext ctx,
int64_t rank, int64_t batch_count, Tensor* output) {
std::vector<T> input_vec;
std::vector<T> output_vec;
framework::TensorToVector(input, ctx.device_context(), &input_vec);
for (int64_t i = 0; i < batch_count; ++i) { // maybe can be parallel
auto begin_iter = input_vec.begin() + i * rank * rank;
auto end_iter = input_vec.begin() + (i + 1) * rank * rank;
std::vector<T> sub_vec(begin_iter,
end_iter); // get every square matrix data
typename EigenMatrix<T>::MatrixType matrix(rank, rank);
for (int64_t i = 0; i < rank; ++i) {
for (int64_t j = 0; j < rank; ++j) {
matrix(i, j) = sub_vec[rank * i + j];
}
}
output_vec.push_back(matrix.determinant());
}
framework::TensorFromVector(output_vec, output);
}
};
template <typename DeviceContext, typename T>
class DeterminantKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* input = context.Input<framework::Tensor>("Input");
auto input_dim = vectorize(input->dims());
auto input_dim_size = input_dim.size();
auto* output = context.Output<framework::Tensor>("Out");

auto batch_count = GetBatchCount(input->dims());
VLOG(2) << "input dim:" << input->dims();
PADDLE_ENFORCE_GE(
input_dim_size, 2,
platform::errors::InvalidArgument(
"the input matrix dimension size should greater than 2."));
PADDLE_ENFORCE_EQ(input_dim[input_dim_size - 1],
input_dim[input_dim_size - 2],
platform::errors::InvalidArgument(
"the input matrix should be square matrix."));
auto rank = input_dim[input_dim_size - 1]; // square matrix length
DeterminantFunctor<T>()(*input, context, rank, batch_count, output);
auto output_dims = phi::slice_ddim(input->dims(), 0, input_dim_size - 2);
if (input_dim_size > 2) {
output->Resize(output_dims);
} else {
// when input is a two-dimension matrix, The det value is a number.
output->Resize({1});
}
VLOG(2) << "output dim:" << output->dims();
}
};

template <typename T>
struct FoundZeroFunctor {
FoundZeroFunctor(const T* x, int64_t numel, bool* res)
: x_(x), numel_(numel), res_(res) {}
HOSTDEVICE void operator()(size_t idx) const {
if (*res_ || idx >= static_cast<size_t>(numel_)) {
// founded zero number
return;
}
*res_ = (x_[idx] == static_cast<T>(0));
}
const T* x_;
int64_t numel_;
bool* res_;
};

template <typename DeviceContext, typename T>
inline bool CheckMatrixInvertible(const framework::ExecutionContext& ctx,
const framework::Tensor* det) {
auto& dev_ctx = ctx.template device_context<DeviceContext>();
auto numel = det->numel();

framework::Tensor dev_tensor;
auto* data = dev_tensor.mutable_data<bool>({1}, ctx.GetPlace());

// set false
phi::funcs::SetConstant<DeviceContext, bool> zero;
zero(dev_ctx, &dev_tensor, false);

// find whether zero
platform::ForRange<DeviceContext> for_range(dev_ctx, numel);
FoundZeroFunctor<T> functor(det->data<T>(), numel, data);
for_range(functor);

// copy to host
dev_ctx.Wait();
framework::Tensor cpu_tensor;
framework::TensorCopy(dev_tensor, platform::CPUPlace(), &cpu_tensor);

// if founded zero, the matrix is not invertible
// else the matrix is invertible
auto* res = cpu_tensor.data<bool>();
return !(*res);
}

template <typename DeviceContext, typename T>
class DeterminantGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto& orig_dev_ctx = context.template device_context<DeviceContext>();
const auto* input = context.Input<framework::Tensor>("Input");
const auto* det = context.Input<framework::Tensor>("Out");
const auto* grad =
context.Input<framework::Tensor>(framework::GradVarName("Out"));
auto* ddet =
context.Output<framework::Tensor>(framework::GradVarName("Input"));

auto input_dims_size = input->dims().size();
if (input_dims_size > 2) {
PADDLE_ENFORCE_EQ(
grad->dims().size() + 2, input_dims_size,
platform::errors::InvalidArgument(
"The grad tensor of det dims size should 2 less than"
" input tensor's, but here differ %d",
input_dims_size - grad->dims().size()));
} else if (input_dims_size == 2) {
// input dims size 2 and grad dims size 1 is possible
PADDLE_ENFORCE_EQ(
grad->dims().size(), 1,
platform::errors::InvalidArgument(
"The grad tensor of det dims size should 2 less than"
" input tensor's, but here differ %d",
input_dims_size - grad->dims().size()));
} else {
// checked in forward, pass
}

auto& dev_ctx = static_cast<
const typename framework::ConvertToPhiContext<DeviceContext>::TYPE&>(
orig_dev_ctx);

// Check Whether the matrix is invertible
// (matrix A not invertible) == (det(A)=0)
if (!CheckMatrixInvertible<DeviceContext, T>(context, det)) {
// The matrix is not invertible
VLOG(3) << "The input matrix not invertible!";
ddet->Resize(input->dims());
phi::Full<T>(dev_ctx, phi::vectorize(input->dims()), static_cast<T>(0.0f),
ddet);
return;
}

// The matrix is invertible
// let |A| = Determinant(A)
// Ref to https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf
// we set d|A| = unsqueeze(dA * |A|, [-1, -2]) * inverse(A).transpose(-2,
// -1)

// First: inverse(A)
framework::Tensor inverse_A;
// A must be square matrices!
inverse_A.Resize(input->dims());
inverse_A.mutable_data<T>(context.GetPlace());

phi::funcs::MatrixInverseFunctor<DeviceContext, T> mat_inv;
mat_inv(orig_dev_ctx, *input, &inverse_A);

VLOG(3) << "inverse(A) dims: " << inverse_A.dims();

// Second: inverse(A).transpose(-2, -1)
framework::Tensor transpose_inverse_A =
phi::TransposeLast2Dim<T>(dev_ctx, inverse_A);

VLOG(3) << "(dA * |A|).transpose(-2, -1) dims: "
<< transpose_inverse_A.dims();

// Third: dA * |A|
auto mul_dA_detA = phi::Multiply<T>(dev_ctx, *grad, *det);
VLOG(3) << "dA * |A| dims: " << mul_dA_detA.dims();

// Fourth: unsqueeze(dA * |A|, [-1, -2])
auto unsqueeze1 = phi::funcs::Unsqueeze(mul_dA_detA, -1);
auto unsqueeze2 = phi::funcs::Unsqueeze(unsqueeze1, -2);
VLOG(3) << "unsqueezed(dA * |A|) dims: " << unsqueeze2.dims();

// Finally: unsqueeze(dA * |A|) * inverse(A)
auto res = phi::Multiply<T>(dev_ctx, unsqueeze2, transpose_inverse_A);

VLOG(3) << "unsqueeze(dA * |A|) * inverse(A) dims: " << res.dims();

framework::TensorCopy(res, context.GetPlace(), ddet);

ddet->Resize(input->dims());
VLOG(3) << "d|A| dims: " << ddet->dims();
}
};

template <typename T>
struct SlogDeterminantFunctor {
void operator()(const Tensor& input, const framework::ExecutionContext ctx,
Expand All @@ -280,7 +57,7 @@ struct SlogDeterminantFunctor {
auto end_iter = input_vec.begin() + (i + 1) * rank * rank;
std::vector<T> sub_vec(begin_iter,
end_iter); // get every square matrix data
typename EigenMatrix<T>::MatrixType matrix(rank, rank);
typename phi::detail::EigenMatrix<T>::MatrixType matrix(rank, rank);
for (int64_t i = 0; i < rank; ++i) {
for (int64_t j = 0; j < rank; ++j) {
matrix(i, j) = sub_vec[rank * i + j];
Expand Down Expand Up @@ -311,7 +88,7 @@ class SlogDeterminantKernel : public framework::OpKernel<T> {
auto input_dim_size = input_dim.size();
auto* output = context.Output<framework::Tensor>("Out");

auto batch_count = GetBatchCount(input->dims());
auto batch_count = phi::detail::GetBatchCount(input->dims());
VLOG(2) << "input dim:" << input->dims();
PADDLE_ENFORCE_GE(
input_dim_size, 2,
Expand Down Expand Up @@ -370,7 +147,9 @@ class SlogDeterminantGradKernel : public framework::OpKernel<T> {
// (matrix A not invertible) == (absslogdet(A)=0)
auto slogdet_vec = slogdet->Split(1, 0);
auto absslogdet_val = slogdet_vec[0];
if (!CheckMatrixInvertible<DeviceContext, T>(context, &absslogdet_val)) {
if (!phi::detail::CheckMatrixInvertible<
T, typename framework::ConvertToPhiContext<DeviceContext>::TYPE>(
dev_ctx, &absslogdet_val)) {
// The matrix is not invertible
VLOG(3) << "The input matrix not invertible!";
dslogdet->Resize(input->dims());
Expand Down
7 changes: 6 additions & 1 deletion paddle/phi/kernels/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,11 @@ kernel_library(full_kernel DEPS ${COMMON_KERNEL_DEPS} empty_kernel)
# Some kernels depend on some targets that are not commonly used.
# These targets are not suitable for common dependencies.
# In this case, you need to manually generate them here.
set(MANUAL_BUILD_KERNELS eigh_kernel gumbel_softmax_kernel gumbel_softmax_grad_kernel math_kernel matrix_power_kernel matrix_power_grad_kernel maxout_kernel maxout_grad_kernel pool_kernel put_along_axis_kernel put_along_axis_grad_kernel segment_pool_kernel segment_pool_grad_kernel softmax_kernel softmax_grad_kernel take_along_axis_kernel take_along_axis_grad_kernel triangular_solve_grad_kernel)
set(MANUAL_BUILD_KERNELS eigh_kernel gumbel_softmax_kernel gumbel_softmax_grad_kernel math_kernel
matrix_power_kernel matrix_power_grad_kernel maxout_kernel maxout_grad_kernel pool_kernel
put_along_axis_kernel put_along_axis_grad_kernel segment_pool_kernel segment_pool_grad_kernel
softmax_kernel softmax_grad_kernel take_along_axis_kernel take_along_axis_grad_kernel
triangular_solve_grad_kernel determinant_grad_kernel)
kernel_library(eigh_kernel DEPS ${COMMON_KERNEL_DEPS} lapack_function)
kernel_library(gumbel_softmax_kernel DEPS ${COMMON_KERNEL_DEPS} softmax)
kernel_library(gumbel_softmax_grad_kernel DEPS ${COMMON_KERNEL_DEPS} softmax)
Expand All @@ -46,6 +50,7 @@ kernel_library(softmax_grad_kernel DEPS ${COMMON_KERNEL_DEPS} softmax)
kernel_library(take_along_axis_kernel DEPS ${COMMON_KERNEL_DEPS} gather_scatter_kernel)
kernel_library(take_along_axis_grad_kernel DEPS ${COMMON_KERNEL_DEPS} gather_scatter_kernel)
kernel_library(triangular_solve_grad_kernel DEPS ${COMMON_KERNEL_DEPS} matrix_reduce)
kernel_library(determinant_grad_kernel DEPS ${COMMON_KERNEL_DEPS} matrix_inverse)

# 4. auto parse and build kernel targets by cmake
register_kernels(EXCLUDES ${COMMON_BAISC_KERNELS} ${MANUAL_BUILD_KERNELS} DEPS ${COMMON_KERNEL_DEPS} ${COMMON_BAISC_KERNELS} )
Expand Down
25 changes: 25 additions & 0 deletions paddle/phi/kernels/cpu/determinant_grad_kernel.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/determinant_grad_kernel.h"

#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/determinant_grad_kernel_impl.h"

PD_REGISTER_KERNEL(determinant_grad,
CPU,
ALL_LAYOUT,
phi::DeterminantGradKernel,
float,
double) {}
21 changes: 21 additions & 0 deletions paddle/phi/kernels/cpu/determinant_kernel.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/determinant_kernel.h"

#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/determinant_kernel_impl.h"

PD_REGISTER_KERNEL(
determinant, CPU, ALL_LAYOUT, phi::DeterminantKernel, float, double) {}
Loading