-
Notifications
You must be signed in to change notification settings - Fork 5.7k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Implementation of MKLDNN FC #9385
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,303 @@ | ||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/fluid/framework/tensor.h" | ||
#include "paddle/fluid/operators/fc_op.h" | ||
#include "paddle/fluid/platform/device_context.h" | ||
#include "paddle/fluid/platform/mkldnn_helper.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
using paddle::framework::Tensor; | ||
using paddle::platform::MKLDNNDeviceContext; | ||
|
||
template <typename T> | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. @tensor-tang Could you help review the |
||
class MKLDNNMD { | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I do not see much benefit defining this There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Basically, the devil is in the details, I reckon that this code refactoring is fairly simple. I carried out this code refactoring because the forward and backward function has been using the same line of code. Looking forward, this code gives us opportunity to make the more generic function for the all operators. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. OK, looking forward to making this code more common for all MKLDNN operators. |
||
public: | ||
explicit MKLDNNMD(const T* in, const T* w, bool bias) | ||
: in{paddle::framework::vectorize2int(in->dims())}, | ||
w{paddle::framework::vectorize2int(w->dims())} { | ||
with_bias_ = bias; | ||
} | ||
|
||
mkldnn::memory::desc dst() const { | ||
return platform::MKLDNNMemDesc({in[0], w[1]}, | ||
mkldnn::memory::data_type::f32, | ||
mkldnn::memory::format::nc); | ||
} | ||
|
||
mkldnn::memory::desc src() const { | ||
return is_spatial() | ||
? platform::MKLDNNMemDesc({in[0], in[1], in[2], in[3]}, | ||
mkldnn::memory::data_type::f32, | ||
mkldnn::memory::format::nchw) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. If your input format is There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I agree with you, but I gather that I can't overcome the some problems - I'm waiting for layers. The input's format for this layer will be changed in the feature when the support ( There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. OK, again, this would be a note for you in case of later optimization. Thanks. |
||
: platform::MKLDNNMemDesc({in[0], in[1]}, | ||
mkldnn::memory::data_type::f32, | ||
mkldnn::memory::format::nc); | ||
} | ||
|
||
mkldnn::memory::desc weights() const { | ||
return is_spatial() | ||
? platform::MKLDNNMemDesc({w[1], in[1], in[2], in[3]}, | ||
mkldnn::memory::data_type::f32, | ||
mkldnn::memory::format::oihw) | ||
: platform::MKLDNNMemDesc({w[1], in[1]}, | ||
mkldnn::memory::data_type::f32, | ||
mkldnn::memory::format::oi); | ||
} | ||
|
||
mkldnn::memory::desc bias() const { | ||
return with_bias_ | ||
? platform::MKLDNNMemDesc({w[1]}, mkldnn::memory::data_type::f32, | ||
mkldnn::memory::format::format_undef) | ||
: platform::MKLDNNMemDesc({}, mkldnn::memory::data_type::f32, | ||
mkldnn::memory::format::format_undef); | ||
} | ||
|
||
private: | ||
bool is_spatial() const { return in.size() > 1 && w.size() > 1; } | ||
|
||
std::vector<int> in; | ||
std::vector<int> w; | ||
bool with_bias_; | ||
bool is_spatial_; | ||
}; | ||
|
||
class MKLDNNMemory { | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Same as And why this There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. See above. |
||
public: | ||
MKLDNNMemory(MKLDNNMD<Tensor>* t, const mkldnn::engine& e) | ||
: md_{t}, engine_{e} {} | ||
virtual ~MKLDNNMemory() = default; | ||
|
||
template <typename Output> | ||
mkldnn::memory dst(const Output* out) { | ||
return mkldnn::memory({md_->dst(), engine_}, | ||
static_cast<void*>(const_cast<float*>(out))); | ||
} | ||
|
||
template <typename Output> | ||
mkldnn::memory dst(Output* out) { | ||
return mkldnn::memory({md_->dst(), engine_}, out); | ||
} | ||
|
||
template <typename Input> | ||
mkldnn::memory src(const Input* in) { | ||
return mkldnn::memory({md_->src(), engine_}, | ||
static_cast<void*>(const_cast<float*>(in))); | ||
} | ||
|
||
template <typename Weight> | ||
mkldnn::memory weights(const Weight* w) { | ||
return mkldnn::memory({md_->weights(), engine_}, | ||
static_cast<void*>(const_cast<float*>(w))); | ||
} | ||
|
||
mkldnn::memory bias() { | ||
return mkldnn::memory(mkldnn::memory::primitive_desc(md_->bias(), engine_)); | ||
} | ||
|
||
private: | ||
MKLDNNMD<Tensor>* md_; | ||
const mkldnn::engine& engine_; | ||
}; | ||
|
||
template <typename T> | ||
class FCMKLDNNOpKernel : public paddle::framework::OpKernel<T> { | ||
void Compute(const paddle::framework::ExecutionContext& ctx) const override { | ||
PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()), | ||
"It must use CPUPlace."); | ||
|
||
auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>(); | ||
const auto& mkldnn_engine = dev_ctx.GetEngine(); | ||
|
||
auto input = ctx.Input<Tensor>("Input"); | ||
auto w = ctx.Input<Tensor>("W"); | ||
|
||
PADDLE_ENFORCE(input->dims().size() == 2 || input->dims().size() == 4, | ||
"Input must be with 2 or 4 dimensions, i.e. NCHW"); | ||
PADDLE_ENFORCE(w->dims().size() == 2 || w->dims().size() == 4, | ||
"Weights must be with 2 or 4 dimensions, i.e. OI or OIHW"); | ||
|
||
bool with_bias = ctx.Attr<bool>("bias_attr"); | ||
MKLDNNMD<Tensor> md(input, w, with_bias); | ||
|
||
std::shared_ptr<mkldnn::inner_product_forward::primitive_desc> pd = | ||
FcFwdPrimitiveDesc(md.src(), md.weights(), md.dst(), md.bias(), | ||
with_bias, mkldnn_engine); | ||
|
||
const std::string key = ctx.op().Output("Out"); | ||
const std::string key_fc_pd = key + "@fc_pd"; | ||
|
||
dev_ctx.SetBlob(key_fc_pd, pd); | ||
|
||
MKLDNNMemory mem(&md, mkldnn_engine); | ||
|
||
const T* input_data = input->data<T>(); | ||
const T* w_data = w->data<T>(); | ||
|
||
auto output = ctx.Output<Tensor>("Out"); | ||
T* output_data = output->mutable_data<T>(ctx.GetPlace()); | ||
|
||
auto dst_memory = mem.dst(output_data); | ||
auto src_memory = mem.src(input_data); | ||
auto weights_memory = mem.weights(w_data); | ||
auto bias_memory = mem.bias(); | ||
|
||
auto forward = with_bias ? mkldnn::inner_product_forward( | ||
*pd, src_memory, weights_memory, bias_memory, | ||
dst_memory) | ||
: mkldnn::inner_product_forward( | ||
*pd, src_memory, weights_memory, dst_memory); | ||
|
||
std::vector<mkldnn::primitive> pipeline = {forward}; | ||
mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait(); | ||
} | ||
|
||
private: | ||
std::unique_ptr<mkldnn::inner_product_forward::primitive_desc> | ||
FcFwdPrimitiveDesc(const mkldnn::memory::desc& src, | ||
const mkldnn::memory::desc& weights, | ||
const mkldnn::memory::desc& dst, | ||
const mkldnn::memory::desc& bias, const bool with_bias, | ||
const mkldnn::engine& engine) const { | ||
auto desc = with_bias | ||
? mkldnn::inner_product_forward::desc( | ||
mkldnn::prop_kind::forward, src, weights, bias, dst) | ||
: mkldnn::inner_product_forward::desc( | ||
mkldnn::prop_kind::forward, src, weights, dst); | ||
|
||
auto pd = new mkldnn::inner_product_forward::primitive_desc(desc, engine); | ||
return std::unique_ptr<mkldnn::inner_product_forward::primitive_desc>(pd); | ||
} | ||
}; | ||
|
||
template <typename T> | ||
class FCMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> { | ||
public: | ||
void Compute(const paddle::framework::ExecutionContext& ctx) const override { | ||
PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()), | ||
"It must use CPUPlace."); | ||
|
||
auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>(); | ||
const auto& mkldnn_engine = dev_ctx.GetEngine(); | ||
|
||
T* input_grad_data = nullptr; | ||
T* w_grad_data = nullptr; | ||
|
||
Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input")); | ||
Tensor* w_grad = ctx.Output<Tensor>(framework::GradVarName("W")); | ||
|
||
if (input_grad) { | ||
input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace()); | ||
} | ||
if (w_grad) { | ||
w_grad_data = w_grad->mutable_data<T>(ctx.GetPlace()); | ||
} | ||
|
||
const Tensor* input = ctx.Input<Tensor>("Input"); | ||
const T* input_data = input->data<T>(); | ||
|
||
const Tensor* w = ctx.Input<Tensor>("W"); | ||
const T* w_data = w->data<T>(); | ||
|
||
const Tensor* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out")); | ||
const T* out_grad_data = out_grad->data<T>(); | ||
|
||
bool with_bias = ctx.Attr<bool>("bias_attr"); | ||
|
||
MKLDNNMD<Tensor> md(input, w, with_bias); | ||
MKLDNNMemory mem(&md, mkldnn_engine); | ||
|
||
auto dst_memory = mem.dst(out_grad_data); | ||
auto src_memory = mem.src(input_data); | ||
auto weights_memory = mem.weights(w_data); | ||
auto bias_memory = mem.bias(); | ||
|
||
const std::string key = ctx.op().Input("Out"); | ||
const std::string key_fc_pd = key + "@fc_pd"; | ||
|
||
auto pd = | ||
std::static_pointer_cast<mkldnn::inner_product_forward::primitive_desc>( | ||
dev_ctx.GetBlob(key_fc_pd)); | ||
|
||
PADDLE_ENFORCE(pd != nullptr, "Fail to find key_fc_pd in device context"); | ||
|
||
if (w_grad) { | ||
auto weights_grad_memory = mem.weights(w_grad_data); | ||
|
||
mkldnn::inner_product_backward_weights::primitive_desc bwd_weight_pd = | ||
FcBwdWeightsPrimitiveDesc(md.src(), md.weights(), md.dst(), md.bias(), | ||
with_bias, *pd, mkldnn_engine); | ||
|
||
auto bwd_weights_prim = mkldnn::inner_product_backward_weights( | ||
bwd_weight_pd, src_memory, dst_memory, weights_grad_memory, | ||
bias_memory); | ||
|
||
std::vector<mkldnn::primitive> pipeline{bwd_weights_prim}; | ||
mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait(); | ||
} | ||
|
||
if (input_grad) { | ||
auto src_grad_memory = mem.src(input_grad_data); | ||
|
||
mkldnn::inner_product_backward_data::primitive_desc bwd_data_pd = | ||
FcBwdDataPrimitiveDesc(md.src(), md.weights(), md.dst(), *pd, | ||
mkldnn_engine); | ||
|
||
auto bwd_data_prim = mkldnn::inner_product_backward_data( | ||
bwd_data_pd, dst_memory, weights_memory, src_grad_memory); | ||
|
||
std::vector<mkldnn::primitive> pipeline{bwd_data_prim}; | ||
mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait(); | ||
} | ||
} | ||
|
||
private: | ||
mkldnn::inner_product_backward_weights::primitive_desc | ||
FcBwdWeightsPrimitiveDesc( | ||
const mkldnn::memory::desc& src, const mkldnn::memory::desc& diff_weights, | ||
const mkldnn::memory::desc& diff_dst, const mkldnn::memory::desc& bias, | ||
const bool with_bias, | ||
const mkldnn::inner_product_forward::primitive_desc& pd, | ||
const mkldnn::engine& engine) const { | ||
auto bwd_weight_desc = with_bias | ||
? mkldnn::inner_product_backward_weights::desc( | ||
src, diff_weights, bias, diff_dst) | ||
: mkldnn::inner_product_backward_weights::desc( | ||
src, diff_weights, bias, diff_dst); | ||
|
||
return mkldnn::inner_product_backward_weights::primitive_desc( | ||
bwd_weight_desc, engine, pd); | ||
} | ||
|
||
mkldnn::inner_product_backward_data::primitive_desc FcBwdDataPrimitiveDesc( | ||
const mkldnn::memory::desc& diff_src, const mkldnn::memory::desc& weights, | ||
const mkldnn::memory::desc& diff_dst, | ||
const mkldnn::inner_product_forward::primitive_desc& pd, | ||
const mkldnn::engine& engine) const { | ||
auto bwd_data_desc = | ||
mkldnn::inner_product_backward_data::desc(diff_src, weights, diff_dst); | ||
return mkldnn::inner_product_backward_data::primitive_desc(bwd_data_desc, | ||
engine, pd); | ||
} | ||
}; | ||
} // namespace operators | ||
} // namespace paddle | ||
|
||
REGISTER_OP_KERNEL(fc, MKLDNN, ::paddle::platform::CPUPlace, | ||
paddle::operators::FCMKLDNNOpKernel<float>); | ||
|
||
REGISTER_OP_KERNEL(fc_grad, MKLDNN, ::paddle::platform::CPUPlace, | ||
paddle::operators::FCMKLDNNGradOpKernel<float>); |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
line 26- line 118 should be moved to
fc_op.cc
file, and thismkldnn_fc_op.cc
file only contains mkldnn related functions.There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Done.