Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added support for dim equals 2 in activation functions #9655

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 25 additions & 13 deletions paddle/fluid/operators/activation_mkldnn_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -13,8 +13,8 @@
limitations under the License. */

#include "mkldnn.hpp"
#include "mkldnn_activation_op.h"
#include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/operators/mkldnn_activation_op.h"

namespace paddle {
namespace operators {
Expand All @@ -40,18 +40,24 @@ void eltwise_forward(const ExecContext &ctx, mkldnn::algorithm algorithm,
const T *dst_data = dst->template mutable_data<T>(ctx.GetPlace());

// get memory dim
PADDLE_ENFORCE(src->dims().size() == 4,
"Input dim must be with 4, i.e. NCHW");
PADDLE_ENFORCE(src->dims().size() == 2 || src->dims().size() == 4,
"Input dim must be with 2 or 4");
std::vector<int> src_tz = framework::vectorize2int(src->dims());

// create memory description
// TODO(kbinias-intel): support more formats
auto data_md = platform::MKLDNNMemDesc(src_tz, mkldnn::memory::f32,
mkldnn::memory::format::nchw);
auto data_md = src_tz.size() == 2
? platform::MKLDNNMemDesc(src_tz, mkldnn::memory::f32,
mkldnn::memory::format::nc)
: platform::MKLDNNMemDesc(src_tz, mkldnn::memory::f32,
mkldnn::memory::format::nchw);

// create memory primitives
auto src_memory = mkldnn::memory({data_md, mkldnn_engine}, (void *)src_data);
auto dst_memory = mkldnn::memory({data_md, mkldnn_engine}, (void *)dst_data);
auto src_memory =
mkldnn::memory({data_md, mkldnn_engine},
static_cast<void *>(const_cast<float *>(src_data)));
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I see that we need const_cast here because we made the type of src_data const auto* in L37. Therefore, I think that instead of removing the const decorator here, we should remove the const from the definition in L37. Am I right?

The change in my mind is something like the following:

  1. in L37, instead of

    const auto *src_data = src->template data<T>();

    we should have

    auto *src_data = src->template data<T>();
  2. Here, we could have

    mkldnn::memory src_mem = mkldnn::memory({data_md, mkldnn_engine},
           static_cast<void*>(src_data));

auto dst_memory =
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The type auto here is a little misleading. We are following Google C++ style in PaddlePaddle, so I'd thought that mkldnn::memory is a function, whose type is unknown until we check the documentation. This made me confused with that exact type auto is. How about

mkldnn::memory dst_memory = mkldnn::memory(...)

mkldnn::memory({data_md, mkldnn_engine},
static_cast<void *>(const_cast<float *>(dst_data)));

auto forward_desc = mkldnn::eltwise_forward::desc(
mkldnn::prop_kind::forward_training, algorithm, data_md, alpha, beta);
Expand Down Expand Up @@ -91,15 +97,21 @@ void eltwise_grad(const ExecContext &ctx, mkldnn::algorithm algorithm,
std::vector<int> src_tz = framework::vectorize2int(x->dims());

// create memory description
auto data_md = platform::MKLDNNMemDesc(src_tz, mkldnn::memory::f32,
mkldnn::memory::format::nchw);
auto data_md = src_tz.size() == 2
? platform::MKLDNNMemDesc(src_tz, mkldnn::memory::f32,
mkldnn::memory::format::nc)
: platform::MKLDNNMemDesc(src_tz, mkldnn::memory::f32,
mkldnn::memory::format::nchw);

// create memory primitives
auto src_memory = mkldnn::memory({data_md, mkldnn_engine}, (void *)src);
auto src_memory = mkldnn::memory(
{data_md, mkldnn_engine}, static_cast<void *>(const_cast<float *>(src)));
auto diff_src_memory =
mkldnn::memory({data_md, mkldnn_engine}, (void *)diff_src);
mkldnn::memory({data_md, mkldnn_engine},
static_cast<void *>(const_cast<float *>(diff_src)));
auto diff_dst_memory =
mkldnn::memory({data_md, mkldnn_engine}, (void *)diff_dst);
mkldnn::memory({data_md, mkldnn_engine},
static_cast<void *>(const_cast<float *>(diff_dst)));

auto backward_desc =
mkldnn::eltwise_backward::desc(algorithm, data_md, data_md, alpha, beta);
Expand Down
44 changes: 36 additions & 8 deletions python/paddle/fluid/tests/unittests/test_activation_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -535,9 +535,37 @@ def test_check_grad(self):


#--------------------test MKLDNN--------------------
class TestMKLDNNRelu(TestRelu):
class TestMKLDNNReluDim2(TestRelu):
def setUp(self):
super(TestMKLDNNRelu, self).setUp()
super(TestMKLDNNReluDim2, self).setUp()

self.attrs = {"use_mkldnn": True}


class TestMKLDNNTanhDim2(TestTanh):
def setUp(self):
super(TestMKLDNNTanhDim2, self).setUp()

self.attrs = {"use_mkldnn": True}


class TestMKLDNNSqrtDim2(TestSqrt):
def setUp(self):
super(TestMKLDNNSqrtDim2, self).setUp()

self.attrs = {"use_mkldnn": True}


class TestMKLDNNAbsDim2(TestAbs):
def setUp(self):
super(TestMKLDNNAbsDim2, self).setUp()

self.attrs = {"use_mkldnn": True}


class TestMKLDNNReluDim4(TestRelu):
def setUp(self):
super(TestMKLDNNReluDim4, self).setUp()

x = np.random.uniform(-1, 1, [2, 4, 3, 5]).astype("float32")
# The same reason with TestAbs
Expand All @@ -549,9 +577,9 @@ def setUp(self):
self.attrs = {"use_mkldnn": True}


class TestMKLDNNTanh(TestTanh):
class TestMKLDNNTanhDim4(TestTanh):
def setUp(self):
super(TestMKLDNNTanh, self).setUp()
super(TestMKLDNNTanhDim4, self).setUp()

self.inputs = {
'X': np.random.uniform(0.1, 1, [2, 4, 3, 5]).astype("float32")
Expand All @@ -560,9 +588,9 @@ def setUp(self):
self.attrs = {"use_mkldnn": True}


class TestMKLDNNSqrt(TestSqrt):
class TestMKLDNNSqrtDim4(TestSqrt):
def setUp(self):
super(TestMKLDNNSqrt, self).setUp()
super(TestMKLDNNSqrtDim4, self).setUp()

self.inputs = {
'X': np.random.uniform(0.1, 1, [2, 4, 3, 5]).astype("float32")
Expand All @@ -571,9 +599,9 @@ def setUp(self):
self.attrs = {"use_mkldnn": True}


class TestMKLDNNAbs(TestAbs):
class TestMKLDNNAbsDim4(TestAbs):
def setUp(self):
super(TestMKLDNNAbs, self).setUp()
super(TestMKLDNNAbsDim4, self).setUp()

x = np.random.uniform(-1, 1, [2, 4, 3, 5]).astype("float32")
# The same reason with TestAbs
Expand Down