Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Split byref op #9956

Merged
merged 11 commits into from
Apr 18, 2018
9 changes: 5 additions & 4 deletions paddle/fluid/operators/detail/sendrecvop_utils.cc
Original file line number Diff line number Diff line change
Expand Up @@ -82,7 +82,7 @@ void SerializeToByteBuffer(const std::string& name, framework::Variable* var,
platform::CPUPlace cpu;
auto& gpu_dev_ctx =
static_cast<const platform::CUDADeviceContext&>(ctx);
auto copy_size = tensor.memory_size();
auto copy_size = tensor.numel() * framework::SizeOfType(tensor.type());
payload = memory::Alloc(cpu, copy_size);

memory::Copy(cpu, payload,
Expand All @@ -99,7 +99,7 @@ void SerializeToByteBuffer(const std::string& name, framework::Variable* var,
} else {
payload = tensor.data<void>();
}
payload_size = tensor.memory_size();
payload_size = tensor.numel() * framework::SizeOfType(tensor.type());
e.WriteVarlengthBeginning(VarMsg::kSerializedFieldNumber, payload_size);
} break;
case framework::proto::VarType_Type_SELECTED_ROWS: {
Expand All @@ -118,7 +118,8 @@ void SerializeToByteBuffer(const std::string& name, framework::Variable* var,
platform::CPUPlace cpu;
auto& gpu_dev_ctx =
static_cast<const platform::CUDADeviceContext&>(ctx);
auto copy_size = tensor->memory_size();
auto copy_size =
tensor->numel() * framework::SizeOfType(tensor->type());
payload = memory::Alloc(cpu, copy_size);
memory::Copy(cpu, payload,
boost::get<platform::CUDAPlace>(tensor->place()),
Expand All @@ -133,7 +134,7 @@ void SerializeToByteBuffer(const std::string& name, framework::Variable* var,
} else {
payload = slr->mutable_value()->data<void>();
}
payload_size = tensor->memory_size();
payload_size = tensor->numel() * framework::SizeOfType(tensor->type());
e.WriteVarlengthBeginning(VarMsg::kSerializedFieldNumber, payload_size);
} break;
default:
Expand Down
101 changes: 101 additions & 0 deletions paddle/fluid/operators/split_byref_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,101 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/split_byref_op.h"
#include "paddle/fluid/operators/split_op.h"

namespace paddle {
namespace operators {
using framework::Tensor;

class SplitByrefOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;

void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of SplitOp should not be null.");
PADDLE_ENFORCE_GE(ctx->Outputs("Out").size(), 1UL,
"Outputs(Out) of SplitOp should not be empty.");
auto in_dims = ctx->GetInputDim("X");
auto outs_names = ctx->Outputs("Out");
size_t num = static_cast<size_t>(ctx->Attrs().Get<int>("num"));
std::vector<int> sections = static_cast<std::vector<int>>(
ctx->Attrs().Get<std::vector<int>>("sections"));
const size_t outs_number = outs_names.size();
std::vector<framework::DDim> outs_dims;
outs_dims.reserve(outs_number);

if (num > 0) {
int64_t in_axis_dim = in_dims[0];
PADDLE_ENFORCE_EQ(in_axis_dim % num, 0,
"tensor split does not result"
" in an equal division");
size_t out_axis_dim = in_axis_dim / num;
for (size_t i = 0; i < outs_number; ++i) {
auto dim = in_dims;
dim[0] = out_axis_dim;
outs_dims.push_back(dim);
}
} else if (sections.size() > 0) {
PADDLE_ENFORCE_EQ(sections.size(), outs_number,
"tensor split sections size"
"should be equal to output size.");
for (size_t i = 0; i < outs_number; ++i) {
auto dim = in_dims;
dim[0] = sections[i];
outs_dims.push_back(dim);
}
}
ctx->SetOutputsDim("Out", outs_dims);
}
};

class SplitByrefOpMaker : public framework::OpProtoAndCheckerMaker {
public:
SplitByrefOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "(Tensor) Input tensor of the split operator.");
AddOutput("Out", "(Tensor) Output tensors of the split operator.")
.AsDuplicable();
AddComment(R"DOC(
SplitByref operator

Split source tensor to sevaral tensors by axis 0. No copy in this operator
is performed, output tensor shares the same blocks of memory.
)DOC");
AddAttr<std::vector<int>>("sections",
"(vector<int>) "
"the length of each output along the "
"specified axis.")
.SetDefault(std::vector<int>{});
AddAttr<int>("num",
"(int, default 0)"
"Number of sub-tensors. This must evenly divide "
"Input.dims()[axis]")
.SetDefault(0);
}
};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
// NOTE: concat op default axis must be 0!
USE_CPU_ONLY_OP(concat);

REGISTER_OPERATOR(split_byref, ops::SplitByrefOp, ops::SplitByrefOpMaker,
ops::SplitGradMaker);
REGISTER_OP_CPU_KERNEL(
split_byref, ops::SplitByrefOpKernel<paddle::platform::CPUPlace, float>);
19 changes: 19 additions & 0 deletions paddle/fluid/operators/split_byref_op.cu.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/split_byref_op.h"
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
split_byref,
ops::SplitByrefOpKernel<paddle::platform::CUDADeviceContext, float>);
43 changes: 43 additions & 0 deletions paddle/fluid/operators/split_byref_op.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,43 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <vector>
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class SplitByrefOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* in = ctx.Input<framework::Tensor>("X");
auto outs = ctx.MultiOutput<framework::Tensor>("Out");
auto place = ctx.GetPlace();

size_t row_offset = 0;
for (size_t i = 0; i < outs.size(); ++i) {
// NOTE: no need to call mutable_data here to allocate memory.
auto* out = outs[i];
VLOG(3) << "spliting by ref: " << row_offset << " " << out->dims()[0];
*out = std::move(in->Slice(row_offset, row_offset + out->dims()[0]));
row_offset += out->dims()[0];
}
}
};

} // namespace operators
} // namespace paddle
15 changes: 0 additions & 15 deletions paddle/fluid/operators/split_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -108,21 +108,6 @@ This operator splits the input tensor into multiple sub-tensors.
}
};

class SplitGradMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

protected:
std::unique_ptr<framework::OpDesc> Apply() const override {
auto op = new framework::OpDesc();
op->SetType("concat");
op->SetInput("X", OutputGrad("Out"));
op->SetOutput("Out", InputGrad("X"));
op->SetAttrMap(Attrs());
return std::unique_ptr<framework::OpDesc>(op);
}
};

} // namespace operators
} // namespace paddle

Expand Down
15 changes: 15 additions & 0 deletions paddle/fluid/operators/split_op.h
Original file line number Diff line number Diff line change
Expand Up @@ -44,5 +44,20 @@ class SplitOpKernel : public framework::OpKernel<T> {
}
};

class SplitGradMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

protected:
std::unique_ptr<framework::OpDesc> Apply() const override {
auto op = new framework::OpDesc();
op->SetType("concat");
op->SetInput("X", OutputGrad("Out"));
op->SetOutput("Out", InputGrad("X"));
op->SetAttrMap(Attrs());
return std::unique_ptr<framework::OpDesc>(op);
}
};

} // namespace operators
} // namespace paddle
2 changes: 1 addition & 1 deletion python/paddle/fluid/distribute_transpiler.py
Original file line number Diff line number Diff line change
Expand Up @@ -824,7 +824,7 @@ def _append_split_op(self, program, gradblocks):
for v in splited_vars:
sections.append(v.shape[0])
program.global_block().append_op(
type="split",
type="split_byref",
inputs={"X": orig_var},
outputs={"Out": splited_vars},
attrs={"sections": sections} # assume split evenly
Expand Down
10 changes: 9 additions & 1 deletion python/paddle/fluid/tests/unittests/test_split_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@

class TestSplitOp(OpTest):
def setUp(self):
self.op_type = "split"
self._set_op_type()
axis = 1
x = np.random.random((4, 5, 6)).astype('float32')
out = np.split(x, [2, 3], axis)
Expand All @@ -28,12 +28,20 @@ def setUp(self):
self.outputs = {'Out': [('out%d' % i, out[i]) \
for i in xrange(len(out))]}

def _set_op_type(self):
self.op_type = "split"

def test_check_output(self):
self.check_output()

def test_check_grad(self):
self.check_grad(['X'], ['out0', 'out1', 'out2'])


class TestSplitByrefOp(OpTest):
def _set_op_type(self):
self.op_type = "split_byref"


if __name__ == '__main__':
unittest.main()