Skip to content

Commit

Permalink
【PPMix No.02】add test_llava and test_qwen2vl (#925)
Browse files Browse the repository at this point in the history
先去configuration_qwen2_vl
找到Qwen2VLForConditionalGeneration启动方式,拿到参数后根据__init__方法调整参数和输入images大小
  • Loading branch information
mikemikimike authored Jan 8, 2025
1 parent 2bd7bff commit 2dfd2db
Show file tree
Hide file tree
Showing 2 changed files with 413 additions and 0 deletions.
221 changes: 221 additions & 0 deletions tests/models/test_llama.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,221 @@



# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
from tkinter.messagebox import NO
os.environ["FLAGS_use_cuda_managed_memory"] = "True"
sys.path.insert(0, os.path.join(os.path.dirname(os.path.abspath(__file__)), "../.."))
import unittest
import numpy as np
import paddle

# 配置和模型定义的导入
from paddlemix.models.llava.language_model.llava_llama import LlavaConfig, LlavaLlamaForCausalLM


# 测试工具导入
from tests.models.test_configuration_common import ConfigTester
from tests.models.test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from tests.testing_utils import slow


class LlavaModelTester:
def __init__(self, parent):
self.parent = parent
self.model_name_or_path = "liuhaotian/llava-v1.6-vicuna-7b"
def get_config(self):
# llava_llama configs copy from paddlemix liuhaotian/llava-v1.6-vicuna-7b
test_config = {
"_name_or_path": "./checkpoints/vicuna-7b-v1-6",
"architectures": [
"LlavaLlamaForCausalLM"
],
"attention_bias": False,
"attention_dropout": 0.0,
"bos_token_id": 1,
"eos_token_id": 2,
"freeze_mm_mlp_adapter": False,
"freeze_mm_vision_resampler": False,
"hidden_act": "silu",
"hidden_size": 4096,
"image_aspect_ratio": "anyres",
"image_crop_resolution": 224,
"image_grid_pinpoints": [
[
336,
672
],
[
672,
336
],
[
672,
672
],
[
1008,
336
],
[
336,
1008
]
],
"image_split_resolution": 224,
"initializer_range": 0.02,
"intermediate_size": 11008,
"max_position_embeddings": 4096,
"mm_hidden_size": 1024,
"mm_patch_merge_type": "spatial_unpad",
"mm_projector_lr": None,
"mm_projector_type": "mlp2x_gelu",
"mm_resampler_type": None,
"mm_use_im_patch_token": False,
"mm_use_im_start_end": False,
"pretrain_mm_mlp_adapter": None,
"mm_vision_select_feature": "patch",
"mm_vision_select_layer": -2,
"mm_vision_tower": "openai/clip-vit-large-patch14-336",
"mm_vision_tower_lr": 2e-06,
"model_type": "llava",
"num_attention_heads": 32,
"num_hidden_layers": 32,
"num_key_value_heads": 32,
"pad_token_id": 0,
"pretraining_tp": 1,
"rms_norm_eps": 1e-05,
"rope_scaling": None,
"rope_theta": 10000.0,
"tie_word_embeddings": False,
"tokenizer_model_max_length": 4096,
"tokenizer_padding_side": "right",
"transformers_version": "4.36.2",
"tune_mm_mlp_adapter": False,
"tune_mm_vision_resampler": False,
"unfreeze_mm_vision_tower": True,
"use_cache": True,
"use_mm_proj": True,
"vocab_size": 32000
}


return LlavaConfig(**test_config)

def prepare_config_and_inputs(self):
# inputs
images = floats_tensor([1, 5, 3, 336, 336])
tokenized_out = {
"input_ids": ids_tensor([1, 50], 5000),
"attention_mask": random_attention_mask([1, 50]),
"image_size": [(640, 429)],
"position_ids": ids_tensor([1, 50], vocab_size=100),
}
# config
config = self.get_config()
return config, images, tokenized_out

def prepare_config_and_inputs_for_common(self):
config, images, tokenized_out = self.prepare_config_and_inputs()
inputs_dict = {
"images": images,
"input_ids": tokenized_out["input_ids"],
"attention_mask": tokenized_out["attention_mask"],
"position_ids": tokenized_out["position_ids"],
"image_size": tokenized_out["image_size"]
}

return config, inputs_dict

def create_and_check_model(self, images, input_ids, image_size, attention_mask, position_ids):
model = LlavaLlamaForCausalLM(config=self.get_config())
model.eval()
with paddle.no_grad():
result = model(
images=images,
input_ids=input_ids,
image_size=image_size,
attention_mask=attention_mask,
position_ids=position_ids,
)
self.parent.assertIsNotNone(result)


class LlavaModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (LlavaLlamaForCausalLM, )
fx_compatible = False
test_head_masking = False
test_pruning = False
test_resize_embeddings = False
test_attention_outputs = False
use_test_model_name_list = False
use_test_inputs_embeds: bool = False

def setUp(self):
# model tester instance
self.model_tester = LlavaModelTester(self)

self.config_tester = ConfigTester(
self,
config_class=LlavaConfig,
)

def test_config(self):
self.config_tester.run_common_tests()

def test_determinism(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

def check_determinism(first, second):
out_1 = first.numpy()
out_2 = second.numpy()
out_1 = out_1[~np.isnan(out_1)]
out_2 = out_2[~np.isnan(out_2)]
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 5e-5)

for model_class in self.all_model_classes:
model = self._make_model_instance(config, model_class)
model.eval()
with paddle.no_grad():
first = model(**inputs_dict)
second = model(**inputs_dict)

if isinstance(first, tuple) and isinstance(second, tuple):
for tensor1, tensor2 in zip(first, second):
check_determinism(tensor1, tensor2)
else:
check_determinism(first, second)

@unittest.skip(reason="Hidden_states is tested in individual model tests")
def test_hidden_states_output(self):
pass

def test_model(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_model(**inputs_dict)


@slow
def test_model_from_pretrained(self):
model = LlavaLlamaForCausalLM.from_pretrained("..../")
self.assertIsNotNone(model)


if __name__ == "__main__":
unittest.main()
Loading

0 comments on commit 2dfd2db

Please sign in to comment.