Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

【PPMix No.02】add test_llava and test_qwen2vl #925

Merged
merged 1 commit into from
Jan 8, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
221 changes: 221 additions & 0 deletions tests/models/test_llama.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,221 @@



# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
from tkinter.messagebox import NO
os.environ["FLAGS_use_cuda_managed_memory"] = "True"
sys.path.insert(0, os.path.join(os.path.dirname(os.path.abspath(__file__)), "../.."))
import unittest
import numpy as np
import paddle

# 配置和模型定义的导入
from paddlemix.models.llava.language_model.llava_llama import LlavaConfig, LlavaLlamaForCausalLM


# 测试工具导入
from tests.models.test_configuration_common import ConfigTester
from tests.models.test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from tests.testing_utils import slow


class LlavaModelTester:
def __init__(self, parent):
self.parent = parent
self.model_name_or_path = "liuhaotian/llava-v1.6-vicuna-7b"
def get_config(self):
# llava_llama configs copy from paddlemix liuhaotian/llava-v1.6-vicuna-7b
test_config = {
"_name_or_path": "./checkpoints/vicuna-7b-v1-6",
"architectures": [
"LlavaLlamaForCausalLM"
],
"attention_bias": False,
"attention_dropout": 0.0,
"bos_token_id": 1,
"eos_token_id": 2,
"freeze_mm_mlp_adapter": False,
"freeze_mm_vision_resampler": False,
"hidden_act": "silu",
"hidden_size": 4096,
"image_aspect_ratio": "anyres",
"image_crop_resolution": 224,
"image_grid_pinpoints": [
[
336,
672
],
[
672,
336
],
[
672,
672
],
[
1008,
336
],
[
336,
1008
]
],
"image_split_resolution": 224,
"initializer_range": 0.02,
"intermediate_size": 11008,
"max_position_embeddings": 4096,
"mm_hidden_size": 1024,
"mm_patch_merge_type": "spatial_unpad",
"mm_projector_lr": None,
"mm_projector_type": "mlp2x_gelu",
"mm_resampler_type": None,
"mm_use_im_patch_token": False,
"mm_use_im_start_end": False,
"pretrain_mm_mlp_adapter": None,
"mm_vision_select_feature": "patch",
"mm_vision_select_layer": -2,
"mm_vision_tower": "openai/clip-vit-large-patch14-336",
"mm_vision_tower_lr": 2e-06,
"model_type": "llava",
"num_attention_heads": 32,
"num_hidden_layers": 32,
"num_key_value_heads": 32,
"pad_token_id": 0,
"pretraining_tp": 1,
"rms_norm_eps": 1e-05,
"rope_scaling": None,
"rope_theta": 10000.0,
"tie_word_embeddings": False,
"tokenizer_model_max_length": 4096,
"tokenizer_padding_side": "right",
"transformers_version": "4.36.2",
"tune_mm_mlp_adapter": False,
"tune_mm_vision_resampler": False,
"unfreeze_mm_vision_tower": True,
"use_cache": True,
"use_mm_proj": True,
"vocab_size": 32000
}


return LlavaConfig(**test_config)

def prepare_config_and_inputs(self):
# inputs
images = floats_tensor([1, 5, 3, 336, 336])
tokenized_out = {
"input_ids": ids_tensor([1, 50], 5000),
"attention_mask": random_attention_mask([1, 50]),
"image_size": [(640, 429)],
"position_ids": ids_tensor([1, 50], vocab_size=100),
}
# config
config = self.get_config()
return config, images, tokenized_out

def prepare_config_and_inputs_for_common(self):
config, images, tokenized_out = self.prepare_config_and_inputs()
inputs_dict = {
"images": images,
"input_ids": tokenized_out["input_ids"],
"attention_mask": tokenized_out["attention_mask"],
"position_ids": tokenized_out["position_ids"],
"image_size": tokenized_out["image_size"]
}

return config, inputs_dict

def create_and_check_model(self, images, input_ids, image_size, attention_mask, position_ids):
model = LlavaLlamaForCausalLM(config=self.get_config())
model.eval()
with paddle.no_grad():
result = model(
images=images,
input_ids=input_ids,
image_size=image_size,
attention_mask=attention_mask,
position_ids=position_ids,
)
self.parent.assertIsNotNone(result)


class LlavaModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (LlavaLlamaForCausalLM, )
fx_compatible = False
test_head_masking = False
test_pruning = False
test_resize_embeddings = False
test_attention_outputs = False
use_test_model_name_list = False
use_test_inputs_embeds: bool = False

def setUp(self):
# model tester instance
self.model_tester = LlavaModelTester(self)

self.config_tester = ConfigTester(
self,
config_class=LlavaConfig,
)

def test_config(self):
self.config_tester.run_common_tests()

def test_determinism(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

def check_determinism(first, second):
out_1 = first.numpy()
out_2 = second.numpy()
out_1 = out_1[~np.isnan(out_1)]
out_2 = out_2[~np.isnan(out_2)]
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 5e-5)

for model_class in self.all_model_classes:
model = self._make_model_instance(config, model_class)
model.eval()
with paddle.no_grad():
first = model(**inputs_dict)
second = model(**inputs_dict)

if isinstance(first, tuple) and isinstance(second, tuple):
for tensor1, tensor2 in zip(first, second):
check_determinism(tensor1, tensor2)
else:
check_determinism(first, second)

@unittest.skip(reason="Hidden_states is tested in individual model tests")
def test_hidden_states_output(self):
pass

def test_model(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_model(**inputs_dict)


@slow
def test_model_from_pretrained(self):
model = LlavaLlamaForCausalLM.from_pretrained("..../")
self.assertIsNotNone(model)


if __name__ == "__main__":
unittest.main()
Loading