Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add unit tests for generation models #3018

Merged
merged 25 commits into from
Aug 22, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 0 additions & 1 deletion model_zoo/ernie-gen/encode.py
Original file line number Diff line number Diff line change
Expand Up @@ -83,7 +83,6 @@ def gen_mask(batch_ids, mask_type='bidi', query_len=None, pad_value=0):
mask = np.tril(mask, -1)
elif mask_type == 'diag':
assert query_len == batch_ids.shape[1]
# import pdb; pdb.set_trace()
mask = np.stack([np.diag(np.diag(m)) for m in mask], 0)

else:
Expand Down
6 changes: 6 additions & 0 deletions paddlenlp/transformers/bart/modeling.py
Original file line number Diff line number Diff line change
Expand Up @@ -428,6 +428,12 @@ def get_encoder(self):
def get_decoder(self):
return self.decoder

def get_input_embeddings(self):
return self.shared

def set_input_embeddings(self, value):
self.shared = value

def forward(self,
input_ids,
attention_mask=None,
Expand Down
218 changes: 212 additions & 6 deletions paddlenlp/transformers/bart/tokenizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,13 +13,64 @@
# See the License for the specific language governing permissions and
# limitations under the License.

import os
from functools import lru_cache

import json
import shutil
from paddle.utils import try_import
from .. import GPTTokenizer, AddedToken
from .. import PretrainedTokenizer, AddedToken

__all__ = ['BartTokenizer']

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"bart-base": 1024,
"bart-large": 1024,
}


@lru_cache()
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a signficant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
_chr = chr
bs = list(range(ord("!"),
ord("~") + 1)) + list(range(
ord("¡"),
ord("¬") + 1)) + list(range(ord("®"),
ord("ÿ") + 1))
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8 + n)
n += 1
cs = [_chr(n) for n in cs]
return dict(zip(bs, cs))


class BartTokenizer(GPTTokenizer):
def get_pairs(word):
"""Return set of symbol pairs in a word.

Word is represented as tuple of symbols (symbols being variable-length strings).
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs


class BartTokenizer(PretrainedTokenizer):
r"""
Construct a BART tokenizer based on byte-level Byte-Pair-Encoding.

Expand Down Expand Up @@ -100,12 +151,12 @@ class BartTokenizer(GPTTokenizer):
}
}
pretrained_init_configuration = {"bart-base": {}, "bart-large": {}}
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES

def __init__(self,
vocab_file,
merges_file,
errors='replace',
max_len=None,
bos_token="<s>",
eos_token="</s>",
cls_token="<s>",
Expand All @@ -115,9 +166,6 @@ def __init__(self,
mask_token="<mask>",
**kwargs):

super(BartTokenizer, self).__init__(vocab_file, merges_file, errors,
max_len, pad_token, eos_token)

bos_token = AddedToken(bos_token,
lstrip=False, rstrip=False) if isinstance(
bos_token, str) else bos_token
Expand Down Expand Up @@ -150,6 +198,33 @@ def __init__(self,
pad_token=pad_token,
mask_token=mask_token)

self._vocab_file = vocab_file
self._merges_file = merges_file
self.num_command_tokens = 2
self.num_type_tokens = 2

with open(vocab_file, 'r', encoding='utf-8') as f:
self.encoder = json.load(f)

self.decoder = {v: k for k, v in self.encoder.items()}

self.num_tokens = len(self.encoder)
self.num_text_tokens = self.num_tokens - 1
self.errors = errors # how to handle errors in decoding
self.byte_encoder = bytes_to_unicode()
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}

with open(merges_file, encoding='utf-8') as f:
bpe_data = f.read().split('\n')[1:-1]

bpe_merges = [tuple(merge.split()) for merge in bpe_data]
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
self.cache = {}
re = try_import("regex")
self.pat = re.compile(
r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
)

def _bpe_encode(self, text):
bpe_tokens = []
re = try_import("regex")
Expand Down Expand Up @@ -200,3 +275,134 @@ def create_token_type_ids_from_sequences(self,
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]

def get_vocab(self):
return dict(self.encoder, **self.added_tokens_encoder)

@property
def vocab_size(self):
"""
Returns the size of vocabulary.

Returns:
int: The sum of size of vocabulary and the size of speical tokens.

"""

return len(self.encoder)

@property
def eol_token_id(self):
if self.eol_token is None:
return None
return self.convert_tokens_to_ids(self.eol_token)

def bpe(self, token):
if token in self.cache:
return self.cache[token]
word = tuple(token)
pairs = get_pairs(word)

if not pairs:
return token

while True:
bigram = min(
pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf')))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
new_word.extend(word[i:j])
i = j
except:
new_word.extend(word[i:])
break

if word[i] == first and i < len(word) - 1 and word[i +
1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = ' '.join(word)
self.cache[token] = word
return word

def _tokenize(self, text):
""" Tokenize a string. """
bpe_tokens = []
re = try_import("regex")
for token in re.findall(self.pat, text):
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
bpe_tokens.extend(bpe_token
for bpe_token in self.bpe(token).split(' '))
return bpe_tokens

def _convert_token_to_id(self, token):
return self.encoder.get(token, self.encoder.get(self.unk_token))

def _convert_id_to_token(self, index):

return self.decoder[index]

def convert_ids_to_string(self, ids):
"""
Converts a single index or a sequence of indices to texts.

Args:
ids (int|List[int]):
The token id (or token ids) to be converted to text.

Returns:
str: The decoded text.

Example:
.. code-block::

from paddlenlp.transformers import GPTTokenizer
tokenizer = GPTTokenizer.from_pretrained('gpt2-medium-en')
print(tokenizer.convert_ids_to_string(tokenizer.convert_ids_to_string([14618, 284, 779, 350, 37382, 47, 37382, 290, 350, 37382, 45, 19930]))
# 'Welcome to use PaddlePaddle and PaddleNLP'

"""

text = ''.join([self.decoder[id] for id in ids])
text = bytearray([self.byte_decoder[c]
for c in text]).decode('utf-8', errors=self.errors)
return text

def save_resources(self, save_directory):
"""
Saves `SentencePiece <https://github.com/google/sentencepiece>`__ file
(ends with '.spm') under `save_directory`.

Args:
save_directory (str): Directory to save files into.
"""
for name, file_name in self.resource_files_names.items():
source_path = getattr(self, "_%s" % name)

save_path = os.path.join(save_directory, file_name)
if os.path.abspath(source_path) != os.path.abspath(save_path):
shutil.copyfile(source_path, save_path)

def convert_tokens_to_string(self, tokens):
"""
Converts a sequence of tokens (string) in a single string.
"""
text = "".join(tokens)
text = bytearray([self.byte_decoder[c]
for c in text]).decode('utf-8', errors=self.errors)
return text
Loading