Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[cherry-pick] Fix some typos for Jetson, metrics and result from release/2.4-typos2 branch and merge. #6119

Merged
merged 2 commits into from
May 2, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion applications/多模态表单识别.md
Original file line number Diff line number Diff line change
Expand Up @@ -809,7 +809,7 @@ plt.imshow(img)
```
fout.write(img_path + "\t" + json.dumps(
{
"ser_resule": result,
"ser_result": result,
}, ensure_ascii=False) + "\n")

```
Expand Down
2 changes: 1 addition & 1 deletion doc/doc_ch/add_new_algorithm.md
Original file line number Diff line number Diff line change
Expand Up @@ -246,7 +246,7 @@ class MyMetric(object):

def get_metric(self):
"""
return metircs {
return metrics {
'acc': 0,
'norm_edit_dis': 0,
}
Expand Down
2 changes: 1 addition & 1 deletion doc/doc_en/add_new_algorithm_en.md
Original file line number Diff line number Diff line change
Expand Up @@ -237,7 +237,7 @@ class MyMetric(object):

def get_metric(self):
"""
return metircs {
return metrics {
'acc': 0,
'norm_edit_dis': 0,
}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -1876,11 +1876,11 @@
" rec_res)\n",
" filter_boxes, filter_rec_res = [], []\n",
" # 根据识别得分的阈值对结果进行过滤,如果得分小于阈值,就过滤掉\n",
" for box, rec_reuslt in zip(dt_boxes, rec_res):\n",
" text, score = rec_reuslt\n",
" for box, rec_result in zip(dt_boxes, rec_res):\n",
" text, score = rec_result\n",
" if score >= self.drop_score:\n",
" filter_boxes.append(box)\n",
" filter_rec_res.append(rec_reuslt)\n",
" filter_rec_res.append(rec_result)\n",
" return filter_boxes, filter_rec_res\n",
"\n",
"def sorted_boxes(dt_boxes):\n",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -1886,11 +1886,11 @@
" rec_res)\n",
" filter_boxes, filter_rec_res = [], []\n",
" #Filter the results according to the threshold of the recognition score, if the score is less than the threshold, filter out\n",
" for box, rec_reuslt in zip(dt_boxes, rec_res):\n",
" text, score = rec_reuslt\n",
" for box, rec_result in zip(dt_boxes, rec_res):\n",
" text, score = rec_result\n",
" if score >= self.drop_score:\n",
" filter_boxes.append(box)\n",
" filter_rec_res.append(rec_reuslt)\n",
" filter_rec_res.append(rec_result)\n",
" return filter_boxes, filter_rec_res\n",
"\n",
"def sorted_boxes(dt_boxes):\n",
Expand Down
24 changes: 12 additions & 12 deletions ppocr/metrics/det_metric.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,9 +64,9 @@ def get_metric(self):
}
"""

metircs = self.evaluator.combine_results(self.results)
metrics = self.evaluator.combine_results(self.results)
self.reset()
return metircs
return metrics

def reset(self):
self.results = [] # clear results
Expand Down Expand Up @@ -127,20 +127,20 @@ def get_metric(self):
'thr 0.9':'precision: 0 recall: 0 hmean: 0',
}
"""
metircs = {}
metrics = {}
hmean = 0
for score_thr in self.results.keys():
metirc = self.evaluator.combine_results(self.results[score_thr])
# for key, value in metirc.items():
# metircs['{}_{}'.format(key, score_thr)] = value
metirc_str = 'precision:{:.5f} recall:{:.5f} hmean:{:.5f}'.format(
metirc['precision'], metirc['recall'], metirc['hmean'])
metircs['thr {}'.format(score_thr)] = metirc_str
hmean = max(hmean, metirc['hmean'])
metircs['hmean'] = hmean
metric = self.evaluator.combine_results(self.results[score_thr])
# for key, value in metric.items():
# metrics['{}_{}'.format(key, score_thr)] = value
metric_str = 'precision:{:.5f} recall:{:.5f} hmean:{:.5f}'.format(
metric['precision'], metric['recall'], metric['hmean'])
metrics['thr {}'.format(score_thr)] = metric_str
hmean = max(hmean, metric['hmean'])
metrics['hmean'] = hmean

self.reset()
return metircs
return metrics

def reset(self):
self.results = {
Expand Down
4 changes: 2 additions & 2 deletions ppocr/metrics/e2e_metric.py
Original file line number Diff line number Diff line change
Expand Up @@ -78,9 +78,9 @@ def __call__(self, preds, batch, **kwargs):
self.results.append(result)

def get_metric(self):
metircs = combine_results(self.results)
metrics = combine_results(self.results)
self.reset()
return metircs
return metrics

def reset(self):
self.results = [] # clear results
4 changes: 2 additions & 2 deletions ppocr/metrics/kie_metric.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,9 +61,9 @@ def combine_results(self, results):

def get_metric(self):

metircs = self.combine_results(self.results)
metrics = self.combine_results(self.results)
self.reset()
return metircs
return metrics

def reset(self):
self.results = [] # clear results
Expand Down
4 changes: 2 additions & 2 deletions ppocr/metrics/vqa_token_ser_metric.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,13 +34,13 @@ def __call__(self, preds, batch, **kwargs):

def get_metric(self):
from seqeval.metrics import f1_score, precision_score, recall_score
metircs = {
metrics = {
"precision": precision_score(self.gt_list, self.pred_list),
"recall": recall_score(self.gt_list, self.pred_list),
"hmean": f1_score(self.gt_list, self.pred_list),
}
self.reset()
return metircs
return metrics

def reset(self):
self.pred_list = []
Expand Down
8 changes: 4 additions & 4 deletions test_tipc/docs/jeston_test_train_inference_python.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
# Jeston端基础训练预测功能测试
# Jetson端基础训练预测功能测试

Jeston端基础训练预测功能测试的主程序为`test_inference_inference.sh`,由于Jeston端CPU较差,Jeston只需要测试TIPC关于GPU和TensorRT预测推理的部分即可
Jetson端基础训练预测功能测试的主程序为`test_inference_inference.sh`,由于Jetson端CPU较差,Jetson只需要测试TIPC关于GPU和TensorRT预测推理的部分即可

## 1. 测试结论汇总

Expand Down Expand Up @@ -42,7 +42,7 @@ Jeston端基础训练预测功能测试的主程序为`test_inference_inference.

先运行`prepare.sh`准备数据和模型,然后运行`test_inference_inference.sh`进行测试,最终在```test_tipc/output```目录下生成`python_infer_*.log`格式的日志文件。

`test_inference_inference.sh`仅有一个模式`whole_infer`,在Jeston端,仅需要测试预测推理的模式即可:
`test_inference_inference.sh`仅有一个模式`whole_infer`,在Jetson端,仅需要测试预测推理的模式即可:

```
- 模式3:whole_infer,不训练,全量数据预测,走通开源模型评估、动转静,检查inference model预测时间和精度;
Expand All @@ -51,7 +51,7 @@ bash test_tipc/prepare.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det/model_lin
# 用法1:
bash test_tipc/test_inference_inference.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det/model_linux_gpu_normal_normal_infer_python_jetson.txt 'whole_infer'
# 用法2: 指定GPU卡预测,第三个传入参数为GPU卡号
bash test_tipc/test_inference_jeston.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det/model_linux_gpu_normal_normal_infer_python_jetson.txt 'whole_infer' '1'
bash test_tipc/test_inference_jetson.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det/model_linux_gpu_normal_normal_infer_python_jetson.txt 'whole_infer' '1'
```

运行相应指令后,在`test_tipc/output`文件夹下自动会保存运行日志。如`whole_infer`模式下,会运行训练+inference的链条,因此,在`test_tipc/output`文件夹有以下文件:
Expand Down
2 changes: 1 addition & 1 deletion tools/infer/utility.py
Original file line number Diff line number Diff line change
Expand Up @@ -193,7 +193,7 @@ def create_predictor(args, mode, logger):
gpu_id = get_infer_gpuid()
if gpu_id is None:
logger.warning(
"GPU is not found in current device by nvidia-smi. Please check your device or ignore it if run on jeston."
"GPU is not found in current device by nvidia-smi. Please check your device or ignore it if run on jetson."
)
config.enable_use_gpu(args.gpu_mem, 0)
if args.use_tensorrt:
Expand Down
2 changes: 1 addition & 1 deletion tools/infer_e2e.py
Original file line number Diff line number Diff line change
Expand Up @@ -104,7 +104,7 @@ def main():
preds = model(images)
post_result = post_process_class(preds, shape_list)
points, strs = post_result['points'], post_result['texts']
# write resule
# write result
dt_boxes_json = []
for poly, str in zip(points, strs):
tmp_json = {"transcription": str}
Expand Down
2 changes: 1 addition & 1 deletion tools/infer_vqa_token_ser_re.py
Original file line number Diff line number Diff line change
Expand Up @@ -193,7 +193,7 @@ def preprocess():
result = result[0]
fout.write(img_path + "\t" + json.dumps(
{
"ser_resule": result,
"ser_result": result,
}, ensure_ascii=False) + "\n")
img_res = draw_re_results(img_path, result)
cv2.imwrite(save_img_path, img_res)