-
Notifications
You must be signed in to change notification settings - Fork 120
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
updata PaddleTS 1.1, adding new models and supporting all-in-one full…
… development tools
- Loading branch information
Showing
3 changed files
with
237 additions
and
40 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,121 @@ | ||
|
||
## 目录 | ||
- [一站式全流程开发简介](#1) | ||
- [时序分析相关能力支持](#2) | ||
- [时序分析相关模型产线列表和教程](#3) | ||
- [时序分析相关单功能模块列表和教程](#4) | ||
|
||
<a name="1"></a> | ||
|
||
## 1. 一站式全流程开发简介 | ||
|
||
飞桨一站式全流程开发工具[PaddleX](https://github.com/PaddlePaddle/PaddleX/tree/release/3.0-beta1),依托于PaddleTS的先进技术,支持了时序分析领域的**一站式全流程**开发能力。通过一站式全流程开发,可实现简单且高效的模型使用、组合与定制。这将显著**减少模型开发的时间消耗**,**降低其开发难度**,大大加快模型在行业中的应用和推广速度。特色如下: | ||
|
||
* 🎨 **模型丰富一键调用**:将时序预测、时序异常检测和时序分类涉及的**13个模型**整合为3条模型产线,通过极简的**Python API一键调用**,快速体验模型效果。此外,同一套API,也支持图像分类、图像分割、目标检测、文本图像智能分析、通用OCR等共计**200+模型**,形成20+单功能模块,方便开发者进行**模型组合使用**。 | ||
|
||
* 🚀 **提高效率降低门槛**:提供基于**统一命令**和**图形界面**两种方式,实现模型简洁高效的使用、组合与定制。支持**高性能部署、服务化部署和端侧部署**等多种部署方式。此外,对于各种主流硬件如**英伟达GPU、昆仑芯、昇腾、寒武纪和海光**等,进行模型开发时,都可以**无缝切换**。 | ||
|
||
>**说明**:PaddleX 致力于实现产线级别的模型训练、推理与部署。模型产线是指一系列预定义好的、针对特定AI任务的开发流程,其中包含能够独立完成某类任务的单模型(单功能模块)组合。 | ||
<a name="2"></a> | ||
|
||
## 2. 时序分析相关能力支持 | ||
|
||
PaddleX中时序分析相关的3条产线均支持本地**快速推理**,部分产线支持**在线体验**,您可以快速体验各个产线的预训练模型效果,如果您对产线的预训练模型效果满意,可以直接对产线进行[高性能部署](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_deploy/high_performance_deploy.md)/[服务化部署](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_deploy/service_deploy.md),如果不满意,您也可以使用产线的**二次开发**能力,提升效果。完整的产线开发流程请参考[PaddleX产线使用概览](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/pipeline_develop_guide.md)或各产线使用教程。 | ||
|
||
此外,PaddleX为开发者提供了基于[云端图形化开发界面](https://aistudio.baidu.com/pipeline/mine)的全流程开发工具, 详细请参考[教程《零门槛开发产业级AI模型》](https://aistudio.baidu.com/practical/introduce/546656605663301) | ||
|
||
<table > | ||
<tr> | ||
<td></td> | ||
<td>在线体验</td> | ||
<td>快速推理</td> | ||
<td>高性能部署</td> | ||
<td>服务化部署</td> | ||
<td>端侧部署</td> | ||
<td>二次开发</td> | ||
<td><a href = "https://aistudio.baidu.com/pipeline/mine">星河零代码产线</a></td> | ||
</tr> | ||
<tr> | ||
<td>时序预测</td> | ||
<td><a href = "https://aistudio.baidu.com/community/app/105706/webUI?source=appMineRecent">链接</a></td> | ||
<td>✅</td> | ||
<td>🚧</td> | ||
<td>✅</td> | ||
<td>🚧</td> | ||
<td>✅</td> | ||
<td>✅</td> | ||
</tr> | ||
<tr> | ||
<td>时序异常检测</td> | ||
<td><a href = "https://aistudio.baidu.com/community/app/105708/webUI?source=appMineRecent">链接</a></td> | ||
<td>✅</td> | ||
<td>🚧</td> | ||
<td>✅</td> | ||
<td>🚧</td> | ||
<td>✅</td> | ||
<td>✅</td> | ||
</tr> | ||
<tr> | ||
<td>时序分类</td> | ||
<td><a href = "https://aistudio.baidu.com/community/app/105707/webUI?source=appMineRecent">链接</a></td> | ||
<td>✅</td> | ||
<td>🚧</td> | ||
<td>✅</td> | ||
<td>🚧</td> | ||
<td>✅</td> | ||
<td>✅</td> | ||
</tr> | ||
</table> | ||
|
||
> ❗注:以上功能均基于GPU/CPU实现。PaddleX还可在昆仑、昇腾、寒武纪和海光等主流硬件上进行快速推理和二次开发。下表详细列出了模型产线的支持情况,具体支持的模型列表请参阅 [模型列表(NPU)](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/support_list/model_list_npu.md) // [模型列表(XPU)](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/support_list/model_list_xpu.md) // [模型列表(MLU)](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/support_list/model_list_mlu.md) // [模型列表DCU](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/support_list/model_list_dcu.md)。同时我们也在适配更多的模型,并在主流硬件上推动高性能和服务化部署的实施。 | ||
|
||
**🚀 国产化硬件能力支持** | ||
|
||
<table> | ||
<tr> | ||
<th>产线名称</th> | ||
<th>昇腾 910B</th> | ||
<th>昆仑 R200/R300</th> | ||
<th>寒武纪 MLU370X8</th> | ||
<th>海光 Z100</th> | ||
</tr> | ||
<tr> | ||
<td>时序预测</td> | ||
<td>✅</td> | ||
<td>✅</td> | ||
<td>✅</td> | ||
<td>🚧</td> | ||
</tr> | ||
<tr> | ||
<td>时序异常检测</td> | ||
<td>✅</td> | ||
<td>🚧</td> | ||
<td>🚧</td> | ||
<td>🚧</td> | ||
</tr> | ||
<tr> | ||
<td>时序分类</td> | ||
<td>✅</td> | ||
<td>🚧</td> | ||
<td>🚧</td> | ||
<td>🚧</td> | ||
</tr> | ||
</table> | ||
|
||
<a name="3"></a> | ||
|
||
## 3. 时序分析相关模型产线列表和教程 | ||
|
||
- **时序预测产线**: [使用教程](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/time_series_pipelines/time_series_forecasting.md) | ||
- **时序异常检测**: [使用教程](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/time_series_pipelines/time_series_anomaly_detection.md) | ||
- **时序分类产线**: [使用教程](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/pipeline_usage/tutorials/time_series_pipelines/time_series_classification.md) | ||
|
||
<a name="4"></a> | ||
|
||
## 4. 时序分析相关单功能模块列表和教程 | ||
|
||
- **时序预测模块**: [使用教程](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/time_series_modules/time_series_forecasting.md) | ||
- **时序异常检测模块**: [使用教程](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/time_series_modules/time_series_anomaly_detection.md) | ||
- **时序分类模块**: [使用教程](https://github.com/PaddlePaddle/PaddleX/blob/release/3.0-beta1/docs/module_usage/tutorials/time_series_modules/time_series_classification.md) |
Oops, something went wrong.