Skip to content

PengxinWang/BayesianPointTransformer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

78 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Master Project

Improve Point Transformer by Bayesian Perturbation for Uncertainty Quantification

Uncertainty Quantification

UQ

- Aleatoric(Data) vs. Epistemic(Model)

Data

  • ModelNet40
    • Shape Classification
  • S3DIS
    • Indoor Semantic Segmentation
  • ShapeNet
    • Part Segmentation
  • how to download?
    • see scripts/download.sh

Data Augmentation

Model Structure

Methods

Rank-one Bayesian Perturbation

Loss Function

File Structure

Note: The framework, taking reference in mmDectection, is a little bit clumsy and complicated. The basic idea is decouple different modules, and

├── config/                                                 
├── data/               
├── scripts/                                # Launcher
│   ├── ...
│   └── train.sh 
├── tools/                                  # Read Config
│   ├── ...
│   └── test.py
└── pointbnn/                               # Main Modules
    ├── engines/                            # Trainer, Tester, Hook
    ├── datasets/                           
    ├── model/                              
    └── utils/                              # misc

Training Details

  • connect to gpu: srun --gres=gpu:2 --cpus-per-task=8 --pty --mail-type=ALL bash
  • 2 RTX 2080 Ti

Experience records:

S3DIS: exp0: ptv3(vanilla), ce, lovasz, rpe, patch_size=64, crop_n_points=102400 exp3: bnn, bce, lovasz, rpe, patch_size=64, sto_type=['heads', 'proj'], crop_n_points=102400 exp5: bnn, bce, lovasz, no rpe, patch_size=128, sto_type=['heads', 'proj'], crop_n_points=102400

ModelNet40: exp0: ptv3(vanilla) exp7: bnn, no rpe, patch_size=128

Misc

The project structure is based on PointCept, Torch-Uncertainty

Releases

No releases published

Packages

No packages published