Improve Point Transformer by Bayesian Perturbation for Uncertainty Quantification
- Aleatoric(Data) vs. Epistemic(Model)- ModelNet40
- Shape Classification
- S3DIS
- Indoor Semantic Segmentation
- ShapeNet
- Part Segmentation
- how to download?
- see scripts/download.sh
Note: The framework, taking reference in mmDectection, is a little bit clumsy and complicated. The basic idea is decouple different modules, and
├── config/
├── data/
├── scripts/ # Launcher
│ ├── ...
│ └── train.sh
├── tools/ # Read Config
│ ├── ...
│ └── test.py
└── pointbnn/ # Main Modules
├── engines/ # Trainer, Tester, Hook
├── datasets/
├── model/
└── utils/ # misc
- connect to gpu:
srun --gres=gpu:2 --cpus-per-task=8 --pty --mail-type=ALL bash
- 2 RTX 2080 Ti
S3DIS: exp0: ptv3(vanilla), ce, lovasz, rpe, patch_size=64, crop_n_points=102400 exp3: bnn, bce, lovasz, rpe, patch_size=64, sto_type=['heads', 'proj'], crop_n_points=102400 exp5: bnn, bce, lovasz, no rpe, patch_size=128, sto_type=['heads', 'proj'], crop_n_points=102400
ModelNet40: exp0: ptv3(vanilla) exp7: bnn, no rpe, patch_size=128
-
GEMM(General Matrix Multiplication)
- A nice blog
- core idea: partition
-
Learn more about sparse convolution: Minkov Engine
-
A nice paper to read: superpoint graph clustering
-
How to infuse 2D feature to 3D, and how does it help? 2D fusion