Skip to content

Repository for the paper Tackling covariate shift with node-based Bayesian neural networks (ICML 2022)

Notifications You must be signed in to change notification settings

PengxinWang/node-BNN-covariate-shift

 
 

Repository files navigation

Tackling covariate shift with node-based Bayesian neural networks

This repository contains a PyTorch implementation of the paper

Tackling covariate shift with node-based Bayesian neural networks

by Trung Trinh, Markus Heinonen, Luigi Acerbi and Samuel Kaski

For more information about the paper, please visit the website.

Please cite our work if you find it useful:

@InProceedings{pmlr-v162-trinh22a,
  title = 	 {Tackling covariate shift with node-based {B}ayesian neural networks},
  author =       {Trinh, Trung and Heinonen, Markus and Acerbi, Luigi and Kaski, Samuel},
  booktitle = 	 {Proceedings of the 39th International Conference on Machine Learning},
  pages = 	 {21751--21775},
  year = 	 {2022},
  editor = 	 {Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan},
  volume = 	 {162},
  series = 	 {Proceedings of Machine Learning Research},
  month = 	 {17--23 Jul},
  publisher =    {PMLR},
}

Installation

pip install -r requirements.txt

Downloading the datasets

To run the experiments, one needs to run the following commands to download the necessary datasets and store them in the data folder:

bash download_scripts/download_cifar10_c.sh
bash download_scripts/download_cifar100_c.sh
bash download_scripts/download_tinyimagenet.sh
bash download_scripts/download_tinyimagenet_c.sh

File Structure

.
+-- models/ (Folder containing all model definitions)
|   +-- resnet.py (containing the ResNet18 model)
|   +-- vgg.py (containing the VGG16 model)
|   +-- preactresnet.py (containing the PreActResNet18 model)
|   +-- utils.py (utility functions and modules)
+-- datasets.py (containing functions to load data)
+-- train_node_bnn.py (script for training node BNNs)
+-- train_sgd.py (script for training deterministic models)

Command to replicate the result

Training VGG16 on CIFAR-10

python train_node_bnn.py with model_name=StoVGG16 validation=False validation_fraction=5000 augment_data=True "kl_type=upper_bound" "gamma=<GAMMA>" entropy_type=BD \
                          num_epochs=300 save_freq=301 logging_freq=1 'kl_weight.kl_min=0.0' "kl_weight.kl_max=1.0" 'kl_weight.last_iter=200' lr_ratio_det=0.01 lr_ratio_sto=1.0 \
                          prior_std=0.30 prior_mean=1.0 "det_params.weight_decay=0.0005" n_components=4 dataset=cifar10 "posterior_mean_init=(1.0,0.05)" "posterior_std_init=(0.30,0.02)" \
                          "det_params.lr=0.05" 'sto_params.lr'=0.05 'sto_params.weight_decay=0.0' "sto_params.momentum=0.0" 'sto_params.nesterov=True' 'num_train_sample'=4 bn_momentum=0.1 \
                          noise_mode=out 'sgd_params.nesterov'=True 'det_milestones=(0.50,0.90)' \
                          name=<UNIQUE_NAME_FOR_THE_EXPERIMENT> \
                          batch_size=128 test_batch_size=512 seed=<RANDOM_SEED> num_test_sample=8

Training VGG16 on CIFAR-100

python train_node_bnn.py with model_name=StoVGG16 validation=False validation_fraction=5000 augment_data=True "kl_type=upper_bound" "gamma=<GAMMA>" entropy_type=BD \
                          num_epochs=300 save_freq=301 logging_freq=1 'kl_weight.kl_min=0.0' "kl_weight.kl_max=1.0" 'kl_weight.last_iter=200' lr_ratio_det=0.01 lr_ratio_sto=1.0 \
                          prior_std=0.30 prior_mean=1.0 "det_params.weight_decay=0.0005" n_components=4 dataset=cifar100 "posterior_mean_init=(1.0,0.05)" "posterior_std_init=(0.30,0.02)" \
                          "det_params.lr=0.05" 'sto_params.lr'=0.05 'sto_params.weight_decay=0.0' "sto_params.momentum=0.0" 'sto_params.nesterov=True' 'num_train_sample'=4 bn_momentum=0.1 \
                          noise_mode=out 'sgd_params.nesterov'=True 'det_milestones=(0.50,0.90)' \
                          name=<UNIQUE_NAME_FOR_THE_EXPERIMENT> \
                          batch_size=128 test_batch_size=512 seed=<RANDOM_SEED> num_test_sample=8

Training ResNet18 on CIFAR-10

python train_node_bnn.py with model_name=StoResNet18 validation=False validation_fraction=5000 augment_data=True "kl_type=upper_bound" "gamma=<GAMMA>" entropy_type=BD \
                          num_epochs=300 save_freq=301 logging_freq=1 'kl_weight.kl_min=0.0' "kl_weight.kl_max=1.0" 'kl_weight.last_iter=200' lr_ratio_det=0.01 lr_ratio_sto=1.0 \
                          prior_std=0.40 prior_mean=1.0 "det_params.weight_decay=0.0005" n_components=4 dataset=cifar10 "posterior_mean_init=(1.0,0.05)" "posterior_std_init=(0.40,0.02)" \
                          "det_params.lr=0.10" 'sto_params.lr'=0.10 'sto_params.weight_decay=0.0' "sto_params.momentum=0.0" 'sto_params.nesterov=True' 'num_train_sample'=4 bn_momentum=0.1 \
                          noise_mode=out 'sgd_params.nesterov'=True 'det_milestones=(0.50,0.90)' \
                          name=<UNIQUE_NAME_FOR_THE_EXPERIMENT> \
                          batch_size=128 test_batch_size=512 seed=<RANDOM_SEED> num_test_sample=8

Training ResNet18 on CIFAR-100

python train_node_bnn.py with model_name=StoResNet18 validation=False validation_fraction=5000 augment_data=True "kl_type=upper_bound" "gamma=<GAMMA>" entropy_type=BD \
                          num_epochs=300 save_freq=301 logging_freq=1 'kl_weight.kl_min=0.0' "kl_weight.kl_max=1.0" 'kl_weight.last_iter=200' lr_ratio_det=0.01 lr_ratio_sto=1.0 \
                          prior_std=0.40 prior_mean=1.0 "det_params.weight_decay=0.0005" n_components=4 dataset=cifar100 "posterior_mean_init=(1.0,0.05)" "posterior_std_init=(0.40,0.02)" \
                          "det_params.lr=0.10" 'sto_params.lr'=0.10 'sto_params.weight_decay=0.0' "sto_params.momentum=0.0" 'sto_params.nesterov=True' 'num_train_sample'=4 bn_momentum=0.1 \
                          noise_mode=out 'sgd_params.nesterov'=True 'det_milestones=(0.50,0.90)' \
                          name=<UNIQUE_NAME_FOR_THE_EXPERIMENT> \
                          batch_size=128 test_batch_size=512 seed=<RANDOM_SEED> num_test_sample=8

For more information on each training option, please read the comments in the train.py file. Each experiment will be stored in a subfolder of the experiments folder.

About

Repository for the paper Tackling covariate shift with node-based Bayesian neural networks (ICML 2022)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.4%
  • Shell 0.6%