Skip to content

Commit

Permalink
Utilizing subprocess for nnUNet training. (#7576)
Browse files Browse the repository at this point in the history
Workaround for #7575 

### Description
- Due to the impact of #7575, the operation to set the device within
nnUNetV2Runner will become ineffective. This PR is intended to resolve
this issue.
- Add a version check for #7575, will revisit after the update from
pytorch team.

### Types of changes
<!--- Put an `x` in all the boxes that apply, and remove the not
applicable items -->
- [x] Non-breaking change (fix or new feature that would not break
existing functionality).
- [ ] Breaking change (fix or new feature that would cause existing
functionality to change).
- [ ] New tests added to cover the changes.
- [ ] Integration tests passed locally by running `./runtests.sh -f -u
--net --coverage`.
- [ ] Quick tests passed locally by running `./runtests.sh --quick
--unittests --disttests`.
- [ ] In-line docstrings updated.
- [ ] Documentation updated, tested `make html` command in the `docs/`
folder.

---------

Signed-off-by: YunLiu <[email protected]>
  • Loading branch information
KumoLiu authored Apr 1, 2024
1 parent 2d463a7 commit 15d2abf
Show file tree
Hide file tree
Showing 2 changed files with 45 additions and 52 deletions.
94 changes: 43 additions & 51 deletions monai/apps/nnunet/nnunetv2_runner.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@
from monai.apps.nnunet.utils import analyze_data, create_new_data_copy, create_new_dataset_json
from monai.bundle import ConfigParser
from monai.utils import ensure_tuple, optional_import
from monai.utils.misc import run_cmd

load_pickle, _ = optional_import("batchgenerators.utilities.file_and_folder_operations", name="load_pickle")
join, _ = optional_import("batchgenerators.utilities.file_and_folder_operations", name="join")
Expand Down Expand Up @@ -495,65 +496,64 @@ def train_single_model(self, config: Any, fold: int, gpu_id: tuple | list | int
fold: fold of the 5-fold cross-validation. Should be an int between 0 and 4.
gpu_id: an integer to select the device to use, or a tuple/list of GPU device indices used for multi-GPU
training (e.g., (0,1)). Default: 0.
from nnunetv2.run.run_training import run_training
kwargs: this optional parameter allows you to specify additional arguments in
``nnunetv2.run.run_training.run_training``. Currently supported args are
- plans_identifier: custom plans identifier. Default: "nnUNetPlans".
- pretrained_weights: path to nnU-Net checkpoint file to be used as pretrained model. Will only be
used when actually training. Beta. Use with caution. Default: False.
- use_compressed_data: True to use compressed data for training. Reading compressed data is much
more CPU and (potentially) RAM intensive and should only be used if you know what you are
doing. Default: False.
- continue_training: continue training from latest checkpoint. Default: False.
- only_run_validation: True to run the validation only. Requires training to have finished.
Default: False.
- disable_checkpointing: True to disable checkpointing. Ideal for testing things out and you
don't want to flood your hard drive with checkpoints. Default: False.
``nnunetv2.run.run_training.run_training_entry``.
Currently supported args are:
- p: custom plans identifier. Default: "nnUNetPlans".
- pretrained_weights: path to nnU-Net checkpoint file to be used as pretrained model. Will only be
used when actually training. Beta. Use with caution. Default: False.
- use_compressed: True to use compressed data for training. Reading compressed data is much
more CPU and (potentially) RAM intensive and should only be used if you know what you are
doing. Default: False.
- c: continue training from latest checkpoint. Default: False.
- val: True to run the validation only. Requires training to have finished.
Default: False.
- disable_checkpointing: True to disable checkpointing. Ideal for testing things out and you
don't want to flood your hard drive with checkpoints. Default: False.
"""
if "num_gpus" in kwargs:
kwargs.pop("num_gpus")
logger.warning("please use gpu_id to set the GPUs to use")

if "trainer_class_name" in kwargs:
kwargs.pop("trainer_class_name")
if "tr" in kwargs:
kwargs.pop("tr")
logger.warning("please specify the `trainer_class_name` in the __init__ of `nnUNetV2Runner`.")

if "export_validation_probabilities" in kwargs:
kwargs.pop("export_validation_probabilities")
if "npz" in kwargs:
kwargs.pop("npz")
logger.warning("please specify the `export_validation_probabilities` in the __init__ of `nnUNetV2Runner`.")

cmd = self.train_single_model_command(config, fold, gpu_id, kwargs)
run_cmd(cmd, shell=True)

def train_single_model_command(self, config, fold, gpu_id, kwargs):
if isinstance(gpu_id, (tuple, list)):
if len(gpu_id) > 1:
gpu_ids_str = ""
for _i in range(len(gpu_id)):
gpu_ids_str += f"{gpu_id[_i]},"
os.environ["CUDA_VISIBLE_DEVICES"] = gpu_ids_str[:-1]
device_setting = f"CUDA_VISIBLE_DEVICES={gpu_ids_str[:-1]}"
else:
os.environ["CUDA_VISIBLE_DEVICES"] = f"{gpu_id[0]}"
else:
os.environ["CUDA_VISIBLE_DEVICES"] = f"{gpu_id}"

from nnunetv2.run.run_training import run_training

if isinstance(gpu_id, int) or len(gpu_id) == 1:
run_training(
dataset_name_or_id=self.dataset_name_or_id,
configuration=config,
fold=fold,
trainer_class_name=self.trainer_class_name,
export_validation_probabilities=self.export_validation_probabilities,
**kwargs,
)
device_setting = f"CUDA_VISIBLE_DEVICES={gpu_id[0]}"
else:
run_training(
dataset_name_or_id=self.dataset_name_or_id,
configuration=config,
fold=fold,
num_gpus=len(gpu_id),
trainer_class_name=self.trainer_class_name,
export_validation_probabilities=self.export_validation_probabilities,
**kwargs,
)
device_setting = f"CUDA_VISIBLE_DEVICES={gpu_id}"
num_gpus = 1 if isinstance(gpu_id, int) or len(gpu_id) == 1 else len(gpu_id)

cmd = (
f"{device_setting} nnUNetv2_train "
+ f"{self.dataset_name_or_id} {config} {fold} "
+ f"-tr {self.trainer_class_name} -num_gpus {num_gpus}"
)
if self.export_validation_probabilities:
cmd += " --npz"
for _key, _value in kwargs.items():
if _key == "p" or _key == "pretrained_weights":
cmd += f" -{_key} {_value}"
else:
cmd += f" --{_key} {_value}"
return cmd

def train(
self,
Expand Down Expand Up @@ -637,15 +637,7 @@ def train_parallel_cmd(
if _config in ensure_tuple(configs):
for _i in range(self.num_folds):
the_device = gpu_id_for_all[_index % n_devices] # type: ignore
cmd = (
"python -m monai.apps.nnunet nnUNetV2Runner train_single_model "
+ f"--input_config '{self.input_config_or_dict}' --work_dir '{self.work_dir}' "
+ f"--config '{_config}' --fold {_i} --gpu_id {the_device} "
+ f"--trainer_class_name {self.trainer_class_name} "
+ f"--export_validation_probabilities {self.export_validation_probabilities}"
)
for _key, _value in kwargs.items():
cmd += f" --{_key} {_value}"
cmd = self.train_single_model_command(_config, _i, the_device, kwargs)
all_cmds[-1][the_device].append(cmd)
_index += 1
return all_cmds
Expand Down
3 changes: 2 additions & 1 deletion tests/test_set_visible_devices.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@
import os
import unittest

from tests.utils import skip_if_no_cuda
from tests.utils import SkipIfAtLeastPyTorchVersion, skip_if_no_cuda


class TestVisibleDevices(unittest.TestCase):
Expand All @@ -25,6 +25,7 @@ def run_process_and_get_exit_code(code_to_execute):
return int(bin(value).replace("0b", "").rjust(16, "0")[:8], 2)

@skip_if_no_cuda
@SkipIfAtLeastPyTorchVersion((2, 2, 1))
def test_visible_devices(self):
num_gpus_before = self.run_process_and_get_exit_code(
'python -c "import os; import torch; '
Expand Down

0 comments on commit 15d2abf

Please sign in to comment.