Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: add clDice loss #6763

Merged
merged 6 commits into from
Jul 25, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions monai/losses/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@

from __future__ import annotations

from .cldice import SoftclDiceLoss, SoftDiceclDiceLoss
from .contrastive import ContrastiveLoss
from .deform import BendingEnergyLoss
from .dice import (
Expand Down
184 changes: 184 additions & 0 deletions monai/losses/cldice.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,184 @@
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import annotations

import torch
import torch.nn.functional as F
from torch.nn.modules.loss import _Loss


def soft_erode(img: torch.Tensor) -> torch.Tensor: # type: ignore
"""
Perform soft erosion on the input image

Args:
img: the shape should be BCH(WD)

Adapted from:
https://github.com/jocpae/clDice/blob/master/cldice_loss/pytorch/soft_skeleton.py#L6
"""
if len(img.shape) == 4:
p1 = -(F.max_pool2d(-img, (3, 1), (1, 1), (1, 0)))
p2 = -(F.max_pool2d(-img, (1, 3), (1, 1), (0, 1)))
return torch.min(p1, p2) # type: ignore
elif len(img.shape) == 5:
p1 = -(F.max_pool3d(-img, (3, 1, 1), (1, 1, 1), (1, 0, 0)))
p2 = -(F.max_pool3d(-img, (1, 3, 1), (1, 1, 1), (0, 1, 0)))
p3 = -(F.max_pool3d(-img, (1, 1, 3), (1, 1, 1), (0, 0, 1)))
return torch.min(torch.min(p1, p2), p3) # type: ignore


def soft_dilate(img: torch.Tensor) -> torch.Tensor: # type: ignore
"""
Perform soft dilation on the input image

Args:
img: the shape should be BCH(WD)

Adapted from:
https://github.com/jocpae/clDice/blob/master/cldice_loss/pytorch/soft_skeleton.py#L18
"""
if len(img.shape) == 4:
return F.max_pool2d(img, (3, 3), (1, 1), (1, 1)) # type: ignore
elif len(img.shape) == 5:
return F.max_pool3d(img, (3, 3, 3), (1, 1, 1), (1, 1, 1)) # type: ignore


def soft_open(img: torch.Tensor) -> torch.Tensor:
"""
Wrapper function to perform soft opening on the input image

Args:
img: the shape should be BCH(WD)

Adapted from:
https://github.com/jocpae/clDice/blob/master/cldice_loss/pytorch/soft_skeleton.py#L25
"""
eroded_image = soft_erode(img)
dilated_image = soft_dilate(eroded_image)
return dilated_image


def soft_skel(img: torch.Tensor, iter_: int) -> torch.Tensor:
"""
Perform soft skeletonization on the input image

Adapted from:
https://github.com/jocpae/clDice/blob/master/cldice_loss/pytorch/soft_skeleton.py#L29

Args:
img: the shape should be BCH(WD)
iter_: number of iterations for skeletonization

Returns:
skeletonized image
"""
img1 = soft_open(img)
skel = F.relu(img - img1)
for _ in range(iter_):
img = soft_erode(img)
img1 = soft_open(img)
delta = F.relu(img - img1)
skel = skel + F.relu(delta - skel * delta)
return skel


def soft_dice(y_true: torch.Tensor, y_pred: torch.Tensor, smooth: float = 1.0) -> torch.Tensor:
"""
Function to compute soft dice loss

Adapted from:
https://github.com/jocpae/clDice/blob/master/cldice_loss/pytorch/cldice.py#L22

Args:
y_true: the shape should be BCH(WD)
y_pred: the shape should be BCH(WD)

Returns:
dice loss
"""
intersection = torch.sum((y_true * y_pred)[:, 1:, ...])
coeff = (2.0 * intersection + smooth) / (torch.sum(y_true[:, 1:, ...]) + torch.sum(y_pred[:, 1:, ...]) + smooth)
soft_dice: torch.Tensor = 1.0 - coeff
return soft_dice


class SoftclDiceLoss(_Loss):
"""
Compute the Soft clDice loss defined in:

Shit et al. (2021) clDice -- A Novel Topology-Preserving Loss Function
for Tubular Structure Segmentation. (https://arxiv.org/abs/2003.07311)

Adapted from:
https://github.com/jocpae/clDice/blob/master/cldice_loss/pytorch/cldice.py#L7
"""

def __init__(self, iter_: int = 3, smooth: float = 1.0) -> None:
"""
Args:
iter_: Number of iterations for skeletonization
smooth: Smoothing parameter
"""
super().__init__()
self.iter = iter_
self.smooth = smooth

def forward(self, y_true: torch.Tensor, y_pred: torch.Tensor) -> torch.Tensor:
skel_pred = soft_skel(y_pred, self.iter)
skel_true = soft_skel(y_true, self.iter)
tprec = (torch.sum(torch.multiply(skel_pred, y_true)[:, 1:, ...]) + self.smooth) / (
torch.sum(skel_pred[:, 1:, ...]) + self.smooth
)
tsens = (torch.sum(torch.multiply(skel_true, y_pred)[:, 1:, ...]) + self.smooth) / (
torch.sum(skel_true[:, 1:, ...]) + self.smooth
)
cl_dice: torch.Tensor = 1.0 - 2.0 * (tprec * tsens) / (tprec + tsens)
return cl_dice


class SoftDiceclDiceLoss(_Loss):
SauravMaheshkar marked this conversation as resolved.
Show resolved Hide resolved
"""
Compute the Soft clDice loss defined in:

Shit et al. (2021) clDice -- A Novel Topology-Preserving Loss Function
for Tubular Structure Segmentation. (https://arxiv.org/abs/2003.07311)

Adapted from:
https://github.com/jocpae/clDice/blob/master/cldice_loss/pytorch/cldice.py#L38
"""

def __init__(self, iter_: int = 3, alpha: float = 0.5, smooth: float = 1.0) -> None:
"""
Args:
iter_: Number of iterations for skeletonization
smooth: Smoothing parameter
alpha: Weighing factor for cldice
"""
super().__init__()
self.iter = iter_
self.smooth = smooth
self.alpha = alpha

def forward(self, y_true: torch.Tensor, y_pred: torch.Tensor) -> torch.Tensor:
dice = soft_dice(y_true, y_pred, self.smooth)
skel_pred = soft_skel(y_pred, self.iter)
skel_true = soft_skel(y_true, self.iter)
tprec = (torch.sum(torch.multiply(skel_pred, y_true)[:, 1:, ...]) + self.smooth) / (
torch.sum(skel_pred[:, 1:, ...]) + self.smooth
)
tsens = (torch.sum(torch.multiply(skel_true, y_pred)[:, 1:, ...]) + self.smooth) / (
torch.sum(skel_true[:, 1:, ...]) + self.smooth
)
cl_dice = 1.0 - 2.0 * (tprec * tsens) / (tprec + tsens)
total_loss: torch.Tensor = (1.0 - self.alpha) * dice + self.alpha * cl_dice
return total_loss
56 changes: 56 additions & 0 deletions tests/test_cldice_loss.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,56 @@
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import annotations

import unittest

import numpy as np
import torch
from parameterized import parameterized

from monai.losses import SoftclDiceLoss, SoftDiceclDiceLoss

TEST_CASES = [
[ # shape: (1, 4), (1, 4)
{"y_pred": torch.ones((100, 3, 256, 256)), "y_true": torch.ones((100, 3, 256, 256))},
wyli marked this conversation as resolved.
Show resolved Hide resolved
0.0,
],
[ # shape: (1, 5), (1, 5)
{"y_pred": torch.ones((100, 3, 256, 256, 5)), "y_true": torch.ones((100, 3, 256, 256, 5))},
0.0,
],
]


class TestclDiceLoss(unittest.TestCase):
@parameterized.expand(TEST_CASES)
def test_result(self, y_pred_data, expected_val):
loss = SoftclDiceLoss()
loss_dice = SoftDiceclDiceLoss()
result = loss(**y_pred_data)
result_dice = loss_dice(**y_pred_data)
np.testing.assert_allclose(result.detach().cpu().numpy(), expected_val, atol=1e-4, rtol=1e-4)
np.testing.assert_allclose(result_dice.detach().cpu().numpy(), expected_val, atol=1e-4, rtol=1e-4)

def test_with_cuda(self):
loss = SoftclDiceLoss()
loss_dice = SoftDiceclDiceLoss()
i = torch.ones((100, 3, 256, 256))
j = torch.ones((100, 3, 256, 256))
if torch.cuda.is_available():
i = i.cuda()
j = j.cuda()
output = loss(i, j)
output_dice = loss_dice(i, j)
np.testing.assert_allclose(output.detach().cpu().numpy(), 0.0, atol=1e-4, rtol=1e-4)
np.testing.assert_allclose(output_dice.detach().cpu().numpy(), 0.0, atol=1e-4, rtol=1e-4)


if __name__ == "__main__":
unittest.main()