Skip to content

[An End-to-End Robust Point Cloud Semantic Segmentation Network with Single-Step Conditional Diffusion Models, the official code]

License

Notifications You must be signed in to change notification settings

QWTforGithub/CDSegNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

52 Commits
 
 
 
 
 
 
 
 

Repository files navigation

CDSegNet

This repo is the official project repository of the paper An End-to-End Robust Point Cloud Semantic Segmentation Network with Single-Step Conditional Diffusion Models.

  • [ arXiv ]
  • We plan to release the full code in the future, only releasing the relevant training logs.

The Overall Framework

cdsegnet

Overview

Installation

Requirements

The following environment is recommended for running CDSegNet (an NVIDIA 3090 GPU or four NVIDIA 4090 GPUs):

  • Ubuntu: 18.04 and above
  • gcc/g++: 11.4 and above
  • CUDA: 11.8 and above
  • PyTorch: 2.1.0 and above
  • python: 3.8 and above

Environment

  • Base environment
sudo apt-get install libsparsehash-dev

conda create -n cnf python=3.8 -y
conda activate cnf
conda install ninja -y

conda install google-sparsehash -c bioconda

conda install pytorch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 pytorch-cuda=11.8 -c pytorch -c nvidia

conda install h5py pyyaml -c anaconda -y
conda install sharedarray tensorboard tensorboardx yapf addict einops scipy plyfile termcolor timm -c conda-forge -y
conda install pytorch-cluster pytorch-scatter pytorch-sparse -c pyg -y
pip install torch-geometric
pip install spconv-cu118
pip install open3d

# compile C++ extension packages
# Please ensure:
#   nvcc : 11.8
#   gcc/g++ : 11.4 
cd CDSegNet-main
sh compile.sh

# install flashattention
# 1. cuda11.8 -> cuda11.6
#   vim ~/.bashrc
#   export PATH="/usr/local/cuda-11.8/bin:$PATH" -> export PATH="/usr/local/cuda-11.6/bin:$PATH"
#   export CUDA_HOME="/usr/local/cuda-11.8" -> export CUDA_HOME="/usr/local/cuda-11.6"
#   source ~/.bashrc
# 2. Please download flash_attn-2.5.7+cu118torch2.1cxx11abiFALSE-cp38-cp38-linux_x86_64.whl
#   a. The official website: https://github.com/Dao-AILab/flash-attention/releases?page=2
#   b. Our links: Baidu Netdisk and Google Drive in Model Zoo
# 3. pip install flushattention flash_attn-2.5.7+cu118torch2.1cxx11abiFALSE-cp38-cp38-linux_x86_64.whl

Data Preparation

...

Model Zoo

compare

Indoor Benchmark

Model Benchmark Only Training Data? Num GPUs Val mIoU Test mIoU checkpoint
CDSegNet ScanNet 1,2,4 77.9% 74.5% Link1, Link2
PTv3 + CNF ScanNet 2,4 77.7% 73.9% Link1, Link2
PTv3 ScanNet 4 77.6% 73.6% Link
CDSegNet ScanNet200 2,4 36.3% 34.1% Link1, Link2
PTv3 + CNF ScanNet200 2,4 35.9% 33.7% Link1, Link2
PTv3 ScanNet200 4 35.3% 33.2% Link

Outdoor Benckmark

Model Benchmark Only Training Data? Num GPUs Val mIoU Test mIoU checkpoint
CDSegNet nuScenes 4 81.2% 82.0% Link1, Link2
PTv3 + CNF nuScenes 4 80.8% 82.8% Link1, Link2
PTv3 nuScenes 4 80.3% 81.2% Link1

Quick Start

Example

...

Training

Testing

...

About

[An End-to-End Robust Point Cloud Semantic Segmentation Network with Single-Step Conditional Diffusion Models, the official code]

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published