This repo is the official project repository of the paper An End-to-End Robust Point Cloud Semantic Segmentation Network with Single-Step Conditional Diffusion Models.
- [ arXiv ]
- We plan to release the full code in the future, only releasing the relevant training logs.
The following environment is recommended for running CDSegNet (an NVIDIA 3090 GPU or four NVIDIA 4090 GPUs):
- Ubuntu: 18.04 and above
- gcc/g++: 11.4 and above
- CUDA: 11.8 and above
- PyTorch: 2.1.0 and above
- python: 3.8 and above
- Base environment
sudo apt-get install libsparsehash-dev
conda create -n cnf python=3.8 -y
conda activate cnf
conda install ninja -y
conda install google-sparsehash -c bioconda
conda install pytorch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 pytorch-cuda=11.8 -c pytorch -c nvidia
conda install h5py pyyaml -c anaconda -y
conda install sharedarray tensorboard tensorboardx yapf addict einops scipy plyfile termcolor timm -c conda-forge -y
conda install pytorch-cluster pytorch-scatter pytorch-sparse -c pyg -y
pip install torch-geometric
pip install spconv-cu118
pip install open3d
# compile C++ extension packages
# Please ensure:
# nvcc : 11.8
# gcc/g++ : 11.4
cd CDSegNet-main
sh compile.sh
# install flashattention
# 1. cuda11.8 -> cuda11.6
# vim ~/.bashrc
# export PATH="/usr/local/cuda-11.8/bin:$PATH" -> export PATH="/usr/local/cuda-11.6/bin:$PATH"
# export CUDA_HOME="/usr/local/cuda-11.8" -> export CUDA_HOME="/usr/local/cuda-11.6"
# source ~/.bashrc
# 2. Please download flash_attn-2.5.7+cu118torch2.1cxx11abiFALSE-cp38-cp38-linux_x86_64.whl
# a. The official website: https://github.com/Dao-AILab/flash-attention/releases?page=2
# b. Our links: Baidu Netdisk and Google Drive in Model Zoo
# 3. pip install flushattention flash_attn-2.5.7+cu118torch2.1cxx11abiFALSE-cp38-cp38-linux_x86_64.whl
...
Model | Benchmark | Only Training Data? | Num GPUs | Val mIoU | Test mIoU | checkpoint |
---|---|---|---|---|---|---|
CDSegNet | ScanNet | ✓ | 1,2,4 | 77.9% | 74.5% | Link1, Link2 |
PTv3 + CNF | ScanNet | ✓ | 2,4 | 77.7% | 73.9% | Link1, Link2 |
PTv3 | ScanNet | ✓ | 4 | 77.6% | 73.6% | Link |
CDSegNet | ScanNet200 | ✓ | 2,4 | 36.3% | 34.1% | Link1, Link2 |
PTv3 + CNF | ScanNet200 | ✓ | 2,4 | 35.9% | 33.7% | Link1, Link2 |
PTv3 | ScanNet200 | ✓ | 4 | 35.3% | 33.2% | Link |
Model | Benchmark | Only Training Data? | Num GPUs | Val mIoU | Test mIoU | checkpoint |
---|---|---|---|---|---|---|
CDSegNet | nuScenes | ✓ | 4 | 81.2% | 82.0% | Link1, Link2 |
PTv3 + CNF | nuScenes | ✓ | 4 | 80.8% | 82.8% | Link1, Link2 |
PTv3 | nuScenes | ✓ | 4 | 80.3% | 81.2% | Link1 |
...
...