Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adding Option to change parallel edge behavior in adjacency_matrix functions #899

Merged
merged 16 commits into from
Jun 20, 2023

Conversation

danielleodigie
Copy link
Contributor

  • Aims to resolve Add option to adjacency matrix functions to adjust parallel edge behavior #413
  • This pull request adds the ability to change the behavior of parallel edges when creating the adjacency matrix.
  • Previously, these functions resorted to summing the weights of the edges
  • Now, while the functions still default to summing the weights, one can choose to take the minimum, maximum, or average of the weights

@coveralls
Copy link

coveralls commented Jun 13, 2023

Pull Request Test Coverage Report for Build 5324125633

  • 59 of 59 (100.0%) changed or added relevant lines in 1 file are covered.
  • No unchanged relevant lines lost coverage.
  • Overall coverage increased (+0.01%) to 96.468%

Totals Coverage Status
Change from base Build 5323946941: 0.01%
Covered Lines: 15186
Relevant Lines: 15742

💛 - Coveralls

Copy link
Contributor

@raynelfss raynelfss left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Everything seems to be working well. I just have a couple of code suggestions. But outside of that, LGTM!

Comment on lines 319 to 340
} else if parallel_edge == "sum" {
matrix[[i, j]] += edge_weight;
} else if parallel_edge == "min" {
let weight_min = matrix[[i, j]].min(edge_weight);
matrix[[i, j]] = weight_min;
} else if parallel_edge == "max" {
let weight_max = matrix[[i, j]].max(edge_weight);
matrix[[i, j]] = weight_max;
} else if parallel_edge == "avg" {
if parallel_edge_count.contains_key(&[i, j]) {
matrix[[i, j]] = (matrix[[i, j]] * parallel_edge_count[&[i, j]] as f64
+ edge_weight)
/ ((parallel_edge_count[&[i, j]] + 1) as f64);
*parallel_edge_count.get_mut(&[i, j]).unwrap() += 1;
} else {
parallel_edge_count.insert([i, j], 2);
matrix[[i, j]] = (matrix[[i, j]] + edge_weight) / 2.0;
}
} else {
return Err(PyValueError::new_err("Parallel edges can currently only be dealt with using \"sum\", \"min\", \"max\", or \"avg\"."));
}
}
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This is good, but have you considered using a match statement instead of the nested else if clauses? It would look somewhat like this.

Suggested change
} else if parallel_edge == "sum" {
matrix[[i, j]] += edge_weight;
} else if parallel_edge == "min" {
let weight_min = matrix[[i, j]].min(edge_weight);
matrix[[i, j]] = weight_min;
} else if parallel_edge == "max" {
let weight_max = matrix[[i, j]].max(edge_weight);
matrix[[i, j]] = weight_max;
} else if parallel_edge == "avg" {
if parallel_edge_count.contains_key(&[i, j]) {
matrix[[i, j]] = (matrix[[i, j]] * parallel_edge_count[&[i, j]] as f64
+ edge_weight)
/ ((parallel_edge_count[&[i, j]] + 1) as f64);
*parallel_edge_count.get_mut(&[i, j]).unwrap() += 1;
} else {
parallel_edge_count.insert([i, j], 2);
matrix[[i, j]] = (matrix[[i, j]] + edge_weight) / 2.0;
}
} else {
return Err(PyValueError::new_err("Parallel edges can currently only be dealt with using \"sum\", \"min\", \"max\", or \"avg\"."));
}
}
} else {
match parallel_edge {
"sum" => {
matrix[[i, j]] += edge_weight;
}
"min" => {
let weight_min = matrix[[i, j]].min(edge_weight);
matrix[[i, j]] = weight_min;
}
"max" => {
let weight_max = matrix[[i, j]].max(edge_weight);
matrix[[i, j]] = weight_max;
}
"avg" => {
if parallel_edge_count.contains_key(&[i, j]) {
matrix[[i, j]] = (matrix[[i, j]] * parallel_edge_count[&[i, j]] as f64
+ edge_weight)
/ ((parallel_edge_count[&[i, j]] + 1) as f64);
*parallel_edge_count.get_mut(&[i, j]).unwrap() += 1;
} else {
parallel_edge_count.insert([i, j], 2);
matrix[[i, j]] = (matrix[[i, j]] + edge_weight) / 2.0;
}
}
_ => {
return Err(PyValueError::new_err("Parallel edges can currently only be dealt with using \"sum\", \"min\", \"max\", or \"avg\"."));
}
}
}
}

Comment on lines 397 to 425
} else if parallel_edge == "sum" {
matrix[[i, j]] += edge_weight;
matrix[[j, i]] += edge_weight;
} else if parallel_edge == "min" {
let weight_min = matrix[[i, j]].min(edge_weight);
matrix[[i, j]] = weight_min;
matrix[[j, i]] = weight_min;
} else if parallel_edge == "max" {
let weight_max = matrix[[i, j]].max(edge_weight);
matrix[[i, j]] = weight_max;
matrix[[j, i]] = weight_max;
} else if parallel_edge == "avg" {
if parallel_edge_count.contains_key(&[i, j]) {
matrix[[i, j]] = (matrix[[i, j]] * parallel_edge_count[&[i, j]] as f64
+ edge_weight)
/ ((parallel_edge_count[&[i, j]] + 1) as f64);
matrix[[j, i]] = (matrix[[j, i]] * parallel_edge_count[&[i, j]] as f64
+ edge_weight)
/ ((parallel_edge_count[&[i, j]] + 1) as f64);
*parallel_edge_count.get_mut(&[i, j]).unwrap() += 1;
} else {
parallel_edge_count.insert([i, j], 2);
matrix[[i, j]] = (matrix[[i, j]] + edge_weight) / 2.0;
matrix[[j, i]] = (matrix[[j, i]] + edge_weight) / 2.0;
}
} else {
return Err(PyValueError::new_err("Parallel edges can currently only be dealt with using \"sum\", \"min\", \"max\", or \"avg\"."));
}
}
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

You could also use match here:

Suggested change
} else if parallel_edge == "sum" {
matrix[[i, j]] += edge_weight;
matrix[[j, i]] += edge_weight;
} else if parallel_edge == "min" {
let weight_min = matrix[[i, j]].min(edge_weight);
matrix[[i, j]] = weight_min;
matrix[[j, i]] = weight_min;
} else if parallel_edge == "max" {
let weight_max = matrix[[i, j]].max(edge_weight);
matrix[[i, j]] = weight_max;
matrix[[j, i]] = weight_max;
} else if parallel_edge == "avg" {
if parallel_edge_count.contains_key(&[i, j]) {
matrix[[i, j]] = (matrix[[i, j]] * parallel_edge_count[&[i, j]] as f64
+ edge_weight)
/ ((parallel_edge_count[&[i, j]] + 1) as f64);
matrix[[j, i]] = (matrix[[j, i]] * parallel_edge_count[&[i, j]] as f64
+ edge_weight)
/ ((parallel_edge_count[&[i, j]] + 1) as f64);
*parallel_edge_count.get_mut(&[i, j]).unwrap() += 1;
} else {
parallel_edge_count.insert([i, j], 2);
matrix[[i, j]] = (matrix[[i, j]] + edge_weight) / 2.0;
matrix[[j, i]] = (matrix[[j, i]] + edge_weight) / 2.0;
}
} else {
return Err(PyValueError::new_err("Parallel edges can currently only be dealt with using \"sum\", \"min\", \"max\", or \"avg\"."));
}
}
} else {
match parallel_edge {
"sum" => {
matrix[[i, j]] += edge_weight;
matrix[[j, i]] += edge_weight;
}
"min" => {
let weight_min = matrix[[i, j]].min(edge_weight);
matrix[[i, j]] = weight_min;
matrix[[j, i]] = weight_min;
}
"max" => {
let weight_max = matrix[[i, j]].max(edge_weight);
matrix[[i, j]] = weight_max;
matrix[[j, i]] = weight_max;
}
"avg" => {
if parallel_edge_count.contains_key(&[i, j]) {
matrix[[i, j]] = (matrix[[i, j]] * parallel_edge_count[&[i, j]] as f64
+ edge_weight)
/ ((parallel_edge_count[&[i, j]] + 1) as f64);
matrix[[j, i]] = (matrix[[j, i]] * parallel_edge_count[&[i, j]] as f64
+ edge_weight)
/ ((parallel_edge_count[&[i, j]] + 1) as f64);
*parallel_edge_count.get_mut(&[i, j]).unwrap() += 1;
} else {
parallel_edge_count.insert([i, j], 2);
matrix[[i, j]] = (matrix[[i, j]] + edge_weight) / 2.0;
matrix[[j, i]] = (matrix[[j, i]] + edge_weight) / 2.0;
}
}
_ => {
return Err(PyValueError::new_err("Parallel edges can currently only be dealt with using \"sum\", \"min\", \"max\", or \"avg\"."));
}
}
}
}

@enavarro51
Copy link
Contributor

Thanks for working on this. You should also add 2 tests, 1 for graph and 1 for digraph, to assert that each of the options works correctly.

@danielleodigie danielleodigie marked this pull request as ready for review June 20, 2023 14:45
Copy link
Contributor

@enavarro51 enavarro51 left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LGTM. Thanks for working on this.

@enavarro51 enavarro51 merged commit a468efd into Qiskit:main Jun 20, 2023
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

Add option to adjacency matrix functions to adjust parallel edge behavior
4 participants