forked from triton-lang/triton
-
Notifications
You must be signed in to change notification settings - Fork 30
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Rahul Batra
committed
Sep 6, 2024
1 parent
177d0bd
commit f625a47
Showing
3 changed files
with
214 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,208 @@ | ||
import argparse | ||
import torch | ||
import sys | ||
import pytest | ||
|
||
import triton | ||
import triton.language as tl | ||
|
||
|
||
def is_cuda(): | ||
return triton.runtime.driver.active.get_current_target().backend == "cuda" | ||
|
||
|
||
def is_hip(): | ||
return triton.runtime.driver.active.get_current_target().backend == "hip" | ||
|
||
|
||
def get_cuda_autotune_config(): | ||
return [ | ||
triton.Config({}, num_warps=4, num_stages=1), | ||
triton.Config({}, num_warps=8, num_stages=1), | ||
triton.Config({}, num_warps=16, num_stages=1), | ||
] | ||
|
||
|
||
def get_hip_autotune_config(): | ||
return [ | ||
triton.Config({'waves_per_eu': 1}, num_warps=4, num_stages=1), | ||
triton.Config({'waves_per_eu': 1}, num_warps=8, num_stages=1), | ||
triton.Config({'waves_per_eu': 1}, num_warps=16, num_stages=1), | ||
triton.Config({'waves_per_eu': 2}, num_warps=4, num_stages=1), | ||
triton.Config({'waves_per_eu': 2}, num_warps=8, num_stages=1), | ||
triton.Config({'waves_per_eu': 2}, num_warps=16, num_stages=1), | ||
triton.Config({'waves_per_eu': 4}, num_warps=4, num_stages=1), | ||
triton.Config({'waves_per_eu': 4}, num_warps=8, num_stages=1), | ||
triton.Config({'waves_per_eu': 4}, num_warps=16, num_stages=1), | ||
] | ||
|
||
|
||
def get_autotune_config(): | ||
if is_cuda(): | ||
return get_cuda_autotune_config() | ||
else: | ||
return get_hip_autotune_config() | ||
|
||
|
||
@triton.autotune(configs=get_autotune_config(), key=['n_rows', 'n_cols'], use_cuda_graph=True) | ||
@triton.jit | ||
def rms_kernel(output_ptr, input_ptr, g_ptr, input_row_stride, output_row_stride, n_rows, n_cols, epsilon, | ||
BLOCK_SIZE: tl.constexpr): | ||
row_start = tl.program_id(0) | ||
row_step = tl.num_programs(0) | ||
col_offsets = tl.arange(0, BLOCK_SIZE) | ||
mask = col_offsets < n_cols | ||
for row_idx in tl.range(row_start, n_rows, row_step): | ||
row_start_ptr = input_ptr + row_idx * input_row_stride | ||
input_ptrs = row_start_ptr + col_offsets | ||
input_ptrs = tl.multiple_of(input_ptrs, (16, )) | ||
row = tl.load(input_ptrs, mask=mask, other=0.0, cache_modifier=".cg") | ||
g = tl.load(g_ptr + col_offsets, mask=mask, other=0.0, cache_modifier=".cg") | ||
row_norm = row * row #square each value | ||
row_norm = tl.sum(row_norm, axis=-1) #sum across columns(axis=-1) | ||
row_norm = row_norm / n_cols #divide by n_cols | ||
row_norm = row_norm + epsilon #add epsilon | ||
row_norm = tl.rsqrt(row_norm) #take rsqrt, this is normalization value | ||
rms_norm = row * row_norm #multiply each x by normalization value | ||
rms_norm = rms_norm * g #element wise multiplication with g | ||
|
||
output_row_start_ptr = output_ptr + row_idx * output_row_stride | ||
output_ptrs = output_row_start_ptr + col_offsets | ||
output_ptrs = tl.multiple_of(output_ptrs, (16, )) | ||
tl.store(output_ptrs, rms_norm, mask=mask) | ||
|
||
|
||
def rmsnorm(x, epsilon=1e-6): | ||
n_rows, n_cols = x.shape | ||
BLOCK_SIZE = triton.next_power_of_2(n_cols) | ||
|
||
y = torch.empty_like(x, device='cuda') | ||
g = torch.ones((1, n_cols), device='cuda') | ||
|
||
num_programs = n_rows | ||
grid = lambda meta: (num_programs, ) | ||
rms_kernel[grid](y, x, g, x.stride(0), y.stride(0), n_rows, n_cols, epsilon, BLOCK_SIZE) | ||
|
||
return y | ||
|
||
|
||
def run_rmsnorm(M, N): | ||
torch.manual_seed(0) | ||
x = torch.randn(M, N, device='cuda') | ||
y_triton = rmsnorm(x) | ||
|
||
return y_triton | ||
|
||
|
||
@pytest.mark.parametrize('M, N', [ | ||
(1, 4), | ||
(2, 10), | ||
(8192, 4096), | ||
(4096, 8192), | ||
(1, 8192), | ||
(873, 1245), | ||
]) | ||
def test_rmsnorm(M, N): | ||
torch.manual_seed(0) | ||
x = torch.randn(M, N, device='cuda') | ||
y_triton = rmsnorm(x) | ||
|
||
rms_norm = torch.nn.RMSNorm(N, device='cuda') | ||
y_torch = rms_norm(x) | ||
|
||
assert torch.allclose(y_triton, y_torch), (y_triton, y_torch) | ||
|
||
|
||
#Benchmark | ||
arg_to_torch_dtype = {'fp16': torch.float16, 'bf16': torch.bfloat16, 'fp32': torch.float32} | ||
|
||
|
||
def torch_rmsnorm(x): | ||
M, N = x.shape | ||
rms_norm = torch.nn.RMSNorm(N, device='cuda') | ||
y_torch = rms_norm(x) | ||
|
||
return y_torch | ||
|
||
|
||
def run_benchmark(args): | ||
config = [] | ||
if (args.M_benchmark): | ||
val = args.M_start | ||
x_vals_list = [] | ||
while val <= args.M_end: | ||
x_vals_list.append(val) | ||
val *= args.M_step | ||
mn_args = {'N': args.N_start} | ||
plot_name = str("rmsnorm-performance_" + args.dtype + "_N" + str(args.N_start) + "_M" + str(args.M_start) + | ||
"-" + str(args.M_end) + "-" + str(args.M_step)) | ||
x_names = ['M'] | ||
else: | ||
x_vals_list = [i for i in range(args.N_start, args.N_end, args.N_step)] | ||
mn_args = {'M': args.M_start} | ||
x_names = ['N'] | ||
plot_name = str("rmsnorm-performance_" + args.dtype + "_M" + str(args.M_start) + "_N" + str(args.N_start) + | ||
"-" + str(args.N_end) + "-" + str(args.N_step)) | ||
|
||
dtype = arg_to_torch_dtype[args.dtype] | ||
|
||
print(plot_name) | ||
config.append( | ||
triton.testing.Benchmark( | ||
x_names=x_names, | ||
x_vals=x_vals_list, | ||
line_arg='provider', | ||
line_vals=['triton', 'torch'], | ||
line_names=["Triton", "Torch"], | ||
styles=[('blue', '-'), ('green', '-')], | ||
ylabel="GB/s", | ||
plot_name=plot_name, | ||
args=mn_args, | ||
)) | ||
|
||
@triton.testing.perf_report(config) | ||
def benchmark(M, N, provider): | ||
x = torch.randn(M, N, device='cuda', dtype=dtype) | ||
stream = torch.cuda.Stream() | ||
torch.cuda.set_stream(stream) | ||
if provider == 'torch': | ||
ms = triton.testing.do_bench(lambda: torch_rmsnorm(x)) | ||
if provider == 'triton': | ||
ms = triton.testing.do_bench(lambda: rmsnorm(x)) | ||
gbps = lambda ms: 2 * x.nelement() * x.element_size() * 1e-9 / (ms * 1e-3) | ||
return gbps(ms) | ||
|
||
benchmark.run(save_path=".", show_plots=True, print_data=True) | ||
|
||
|
||
def parse_args(): | ||
parser = argparse.ArgumentParser( | ||
prog="Benchmark RMSNorm", | ||
allow_abbrev=False, | ||
) | ||
|
||
parser.add_argument('-M', "--M_start", default="1", type=int) | ||
parser.add_argument('-Ms', "--M_step", default="2", type=int) #This is multiplicative step | ||
parser.add_argument('-Me', "--M_end", default="512", type=int) | ||
parser.add_argument('-Mb', "--M_benchmark", default=False, type=bool) | ||
|
||
parser.add_argument('-N', "--N_start", default="8192", type=int) | ||
parser.add_argument('-Ns', "--N_step", default="1024", type=int) | ||
parser.add_argument('-Ne', "--N_end", default="32768", type=int) | ||
|
||
parser.add_argument('-d', "--dtype", default="fp16") | ||
parser.add_argument('-nb', "--no_benchmark", default=False, type=bool) | ||
|
||
return parser.parse_args() | ||
|
||
|
||
def main(): | ||
args = parse_args() | ||
if args.no_benchmark: | ||
run_rmsnorm(args.M_start, args.N_start) | ||
else: | ||
run_benchmark(args) | ||
|
||
|
||
if __name__ == "__main__": | ||
sys.exit(main()) |