-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
6 changed files
with
99 additions
and
28 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,32 @@ | ||
import numpy as np | ||
from sklearn.datasets import make_regression | ||
from sklearn.model_selection import train_test_split | ||
|
||
from rektgbm import RektDataset, RektGBM, RektOptimizer | ||
|
||
X, y = make_regression(n_samples=10_000, n_features=10, n_informative=5) | ||
y = np.maximum(y, 0) | ||
|
||
X_train, X_test, y_train, y_test = train_test_split( | ||
X, y, test_size=0.1, random_state=42 | ||
) | ||
dtrain = RektDataset(data=X_train, label=y_train) | ||
dtest = RektDataset(data=X_test, label=y_test) | ||
|
||
rekt_optimizer = RektOptimizer( | ||
method="both", # Optimization method: options are both, lightgbm, xgboost | ||
task_type="regression", # Type of task: regression | ||
objective="gamma", # Objective function | ||
) | ||
|
||
rekt_optimizer.optimize_params( | ||
dataset=RektDataset(X_train, y_train), | ||
n_trials=10, | ||
) | ||
print(rekt_optimizer.best_params) | ||
|
||
rekt_gbm = RektGBM(**rekt_optimizer.best_params) | ||
rekt_gbm.fit( | ||
dataset=RektDataset(X_train, y_train), | ||
) | ||
preds = rekt_gbm.predict(RektDataset(X_test, y_train)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,33 @@ | ||
from sklearn.datasets import make_regression | ||
from sklearn.model_selection import train_test_split | ||
|
||
from rektgbm import RektDataset, RektGBM, RektOptimizer | ||
|
||
X, y = make_regression(n_samples=10_000, n_features=10, n_informative=5) | ||
X_train, X_test, y_train, y_test = train_test_split( | ||
X, y, test_size=0.1, random_state=42 | ||
) | ||
dtrain = RektDataset(data=X_train, label=y_train) | ||
dtest = RektDataset(data=X_test, label=y_test) | ||
|
||
|
||
rekt_optimizer = RektOptimizer( | ||
method="both", # Optimization method: options are both, lightgbm, xgboost | ||
task_type="regression", # Type of task: regression | ||
objective="quantile", # Objective function | ||
additional_params={ | ||
"alpha": 0.5, # # Additional parameter for quanrile; "quantile_alpha" can also be used | ||
}, | ||
) | ||
|
||
rekt_optimizer.optimize_params( | ||
dataset=RektDataset(X_train, y_train), | ||
n_trials=10, | ||
) | ||
print(rekt_optimizer.best_params) | ||
|
||
rekt_gbm = RektGBM(**rekt_optimizer.best_params) | ||
rekt_gbm.fit( | ||
dataset=RektDataset(X_train, y_train), | ||
) | ||
preds = rekt_gbm.predict(RektDataset(X_test, y_train)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,32 @@ | ||
from sklearn.datasets import make_regression | ||
from sklearn.model_selection import train_test_split | ||
|
||
from rektgbm import RektDataset, RektGBM, RektOptimizer | ||
|
||
X, y = make_regression(n_samples=10_000, n_features=10, n_informative=5) | ||
X_train, X_test, y_train, y_test = train_test_split( | ||
X, y, test_size=0.1, random_state=42 | ||
) | ||
dtrain = RektDataset(data=X_train, label=y_train) | ||
dtest = RektDataset(data=X_test, label=y_test) | ||
|
||
rekt_optimizer = RektOptimizer( | ||
method="both", # Optimization method: options are both, lightgbm, xgboost | ||
task_type="regression", # Type of task: regression | ||
objective="huber", # Objective function: options are rmse, mae, huber | ||
additional_params={ | ||
"huber_slope": 0.5 # Additional parameter for huber; "alpha" can also be used | ||
}, | ||
) | ||
|
||
rekt_optimizer.optimize_params( | ||
dataset=RektDataset(X_train, y_train), | ||
n_trials=10, | ||
) | ||
print(rekt_optimizer.best_params) | ||
|
||
rekt_gbm = RektGBM(**rekt_optimizer.best_params) | ||
rekt_gbm.fit( | ||
dataset=RektDataset(X_train, y_train), | ||
) | ||
preds = rekt_gbm.predict(RektDataset(X_test, y_train)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters