Requirements
- Python 3.7
- Bowtie 2 and Bowtie2 build
The pipeline requires reference files before running. They can be found on GALEN:
all reference files contain all the barcodes in fasta format
path: /home/rothlab/rli/02_dev/08_bfg_y2h/bfg_data/reference/
Before running the pipeline, you need to copy everything in these two folders to your designated directory.
If you need to build a new reference for your analysis, please follow:
- You can refer to the create_fasta.py script to build the new fasta file
- Make sure the name for the sequences follows the format:
>*;ORF-BC-ID;*;up/dn
. In other words, the ORF-ID should always be the second item, and the up/dn identifier should always be the last item. (see examples below) - Example sequences in output fasta file:
>G1;YDL169C_BC-1;7;up
CCCTTAGAACCGAGAGTGTGGGTTAAATGGGTGAATTCAGGGATTCACTCCGTTCGTCACTCAATAA
>G1;YMR206W_BC-1;1.0;DB;up
CCATACGAGCACATTACGGGGCTTGAGTTATATAGTCGATCCGGGCTAACTCGCATACCTCTGATAAC
>G09;56346_BC-1;24126.0;DB;dn
TCGATAGGTGCGTGTGAAGGATGTTCCCCCGGTCACCGGGCCAGTCCTCAGTCGCTCAGTCAAG
- After making the fasta file, build index with bowtie2-build
bowtie2-build filename.fasta filename
- Update main.py to use the summary files you generated
- Edit parse_input_files() to add a case
-
Install from pypi (recommend):
python -m pip install BFG-Y2H
-
Install and build from github, the update.sh might need to be modified before you install
1. download the package from github
2. inside the root folder, run ./update.sh
- Input arguments:
usage: bfg [-h] [--fastq FASTQ] [--output OUTPUT] --mode MODE [--alignment]
[--ref REF] [--cutOff CUTOFF]
BFG-Y2H
optional arguments:
-h, --help show this help message and exit
--fastq FASTQ Path to all fastq files you want to analyze
--output OUTPUT Output path for sam files
--mode MODE pick yeast or human or virus or hedgy or LAgag
--alignment turn on alignment
--ref REF path to all reference files
--cutOff CUTOFF assign cut off
-
All the input fastq files should have names following the format: y|hADDBGFP(pre|med|high) (for human and yeast)
-
Run the pipeline on GALEN
# this will run the pipeline using slurm
# all the fastq files in the given folder will be processed
# run with alignment
bfg --fastq /path/to/fastq_files/ --output /path/to/output_dir/ --mode yeast/human/virus/hedgy --alignment --ref path/to/reference
# if alignment was finished, you want to only do read counts
bfg --fastq /path/to/fastq_files/ --output /path/to/output_dir/ --mode yeast/human/virus/hedgy --ref path/to/reference
-
After running the pipeline, one folder will be generated for each group pair (yADDB)
-
The folder called
GALEN_jobs
saves all the bash scripts submited to GALEN -
In the output folder for each group pair, we aligned R1 and R2 separately to the reference sequences for GFP_pre, GFP_med and GFP_high.
-
*_sorted.sam
: Raw sam files generated from bowtie2 -
*_noh.csv
: shrinked sam files, used for scoring -
*_counts.csv
: barcode counts for uptags, dntags, and combined (up+dn)