Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

unit test for sim_cat #209

Merged
merged 7 commits into from
Dec 12, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion csep/core/binomial_evaluations.py
Original file line number Diff line number Diff line change
Expand Up @@ -152,7 +152,7 @@ def _binary_likelihood_test(forecast_data, observed_data, num_simulations=1000,
# data structures to store results
sim_fore = numpy.zeros(sampling_weights.shape)
simulated_ll = []
n_active_cells = len(np.unique(np.nonzero(observed_data.ravel())))
n_active_cells = len(numpy.unique(numpy.nonzero(observed_data.ravel())))
n_fore = numpy.sum(forecast_data)
expected_forecast_count = int(n_active_cells)

Expand Down
42 changes: 35 additions & 7 deletions tests/test_evaluations.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,9 +2,8 @@
import numpy
import unittest

from csep.core.poisson_evaluations import _simulate_catalog, _poisson_likelihood_test
from csep.core.binomial_evaluations import binary_joint_log_likelihood_ndarray

import csep.core.poisson_evaluations as poisson
import csep.core.binomial_evaluations as binary

def get_datadir():
root_dir = os.path.dirname(os.path.abspath(__file__))
Expand Down Expand Up @@ -48,21 +47,21 @@ def test_simulate_catalog(self):

# this is taken from the test likelihood function
sim_fore = numpy.empty(sampling_weights.shape)
sim_fore = _simulate_catalog(num_events, sampling_weights, sim_fore,
sim_fore = poisson._simulate_catalog(num_events, sampling_weights, sim_fore,
random_numbers=self.random_matrix)

# final statement
numpy.testing.assert_allclose(expected_catalog, sim_fore)

# test again to ensure that fill works properply
sim_fore = _simulate_catalog(num_events, sampling_weights, sim_fore,
sim_fore = poisson._simulate_catalog(num_events, sampling_weights, sim_fore,
random_numbers=self.random_matrix)

# final statement
numpy.testing.assert_allclose(expected_catalog, sim_fore)

def test_likelihood(self):
qs, obs_ll, simulated_ll = _poisson_likelihood_test(self.forecast_data, self.observed_data, num_simulations=1,
qs, obs_ll, simulated_ll = poisson._poisson_likelihood_test(self.forecast_data, self.observed_data, num_simulations=1,
random_numbers=self.random_matrix, use_observed_counts=True)

# very basic result to pass "laugh" test
Expand All @@ -78,13 +77,42 @@ def test_likelihood(self):
class TestBinomialLikelihood(unittest.TestCase):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.seed = 0
numpy.random.seed(self.seed)
self.forecast_data = numpy.array([[0.1, 0.3, 0.4], [0.2, 0.1, 0.1]])
self.observed_data = numpy.array([[0, 1, 2], [1, 1, 0]])
self.random_matrix = numpy.random.rand(1, 9)

def test_joint_likelihood_calculation(self):
bill = binary_joint_log_likelihood_ndarray(self.forecast_data, self.observed_data)
bill = binary.binary_joint_log_likelihood_ndarray(self.forecast_data, self.observed_data)
numpy.testing.assert_allclose(bill, -6.7197988064)

def test_simulate_active_cells(self):
#With fixed seed we get the same random numbers if we get all the number at once or one by one.
#Making sure random number generated by seed 0 match.
expected_random_numbers = numpy.array([[0.5488135, 0.71518937, 0.60276338, 0.54488318, 0.4236548, 0.64589411,
0.4375872112626925, 0.8917730007820798, 0.9636627605010293]])

numpy.testing.assert_allclose(expected_random_numbers, self.random_matrix)

#We can expect the following catalog, if we get the above random numbers.
#We get 4 active cells after 9th random sample.
expected_catalog = [0, 0, 1, 1, 1, 1]

sampling_weights = numpy.cumsum(self.forecast_data.ravel()) / numpy.sum(self.forecast_data)
sim_fore = numpy.zeros(sampling_weights.shape)
obs_active_cells = len(numpy.unique(numpy.nonzero(self.observed_data.ravel())))
#resetting seed again to 0, to make sure _simulate_catalog uses this.
seed = 0
numpy.random.seed(seed)
sim_fore = binary._simulate_catalog(obs_active_cells, sampling_weights, sim_fore)
numpy.testing.assert_allclose(expected_catalog, sim_fore)

def test_binomial_likelihood(self):
qs, bill, simulated_ll = binary._binary_likelihood_test(self.forecast_data,self.observed_data, num_simulations=1,seed=0, verbose=True)
numpy.testing.assert_allclose(bill, -6.7197988064)
numpy.testing.assert_allclose(qs, 1)
numpy.testing.assert_allclose(simulated_ll[0], -7.921741654647629)


if __name__ == '__main__':
Expand Down