-
Notifications
You must be signed in to change notification settings - Fork 1.2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #11 from mobiusml/fw_compliance
Adding further changes before PR
- Loading branch information
Showing
16 changed files
with
2,079 additions
and
50 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,94 @@ | ||
import argparse | ||
import time | ||
|
||
from typing import Callable | ||
|
||
import py3nvml.py3nvml as nvml | ||
|
||
from memory_profiler import memory_usage | ||
from utils import MyThread, get_logger, inference | ||
|
||
logger = get_logger("faster-whisper") | ||
parser = argparse.ArgumentParser(description="Memory benchmark") | ||
parser.add_argument( | ||
"--gpu_memory", action="store_true", help="Measure GPU memory usage" | ||
) | ||
parser.add_argument("--device-index", type=int, default=0, help="GPU device index") | ||
parser.add_argument( | ||
"--interval", | ||
type=float, | ||
default=0.5, | ||
help="Interval at which measurements are collected", | ||
) | ||
args = parser.parse_args() | ||
device_idx = args.device_index | ||
interval = args.interval | ||
|
||
|
||
def measure_memory(func: Callable[[], None]): | ||
if args.gpu_memory: | ||
logger.info( | ||
"Measuring maximum GPU memory usage on GPU device." | ||
" Make sure to not have additional processes running on the same GPU." | ||
) | ||
# init nvml | ||
nvml.nvmlInit() | ||
handle = nvml.nvmlDeviceGetHandleByIndex(device_idx) | ||
gpu_name = nvml.nvmlDeviceGetName(handle) | ||
gpu_memory_limit = nvml.nvmlDeviceGetMemoryInfo(handle).total >> 20 | ||
gpu_power_limit = nvml.nvmlDeviceGetPowerManagementLimit(handle) / 1000.0 | ||
info = {"gpu_memory_usage": [], "gpu_power_usage": []} | ||
|
||
def _get_gpu_info(): | ||
while True: | ||
info["gpu_memory_usage"].append( | ||
nvml.nvmlDeviceGetMemoryInfo(handle).used >> 20 | ||
) | ||
info["gpu_power_usage"].append( | ||
nvml.nvmlDeviceGetPowerUsage(handle) / 1000 | ||
) | ||
time.sleep(interval) | ||
|
||
if stop: | ||
break | ||
|
||
return info | ||
|
||
stop = False | ||
thread = MyThread(_get_gpu_info, params=()) | ||
thread.start() | ||
func() | ||
stop = True | ||
thread.join() | ||
result = thread.get_result() | ||
|
||
# shutdown nvml | ||
nvml.nvmlShutdown() | ||
max_memory_usage = max(result["gpu_memory_usage"]) | ||
max_power_usage = max(result["gpu_power_usage"]) | ||
print("GPU name: %s" % gpu_name) | ||
print("GPU device index: %s" % device_idx) | ||
print( | ||
"Maximum GPU memory usage: %dMiB / %dMiB (%.2f%%)" | ||
% ( | ||
max_memory_usage, | ||
gpu_memory_limit, | ||
(max_memory_usage / gpu_memory_limit) * 100, | ||
) | ||
) | ||
print( | ||
"Maximum GPU power usage: %dW / %dW (%.2f%%)" | ||
% ( | ||
max_power_usage, | ||
gpu_power_limit, | ||
(max_power_usage / gpu_power_limit) * 100, | ||
) | ||
) | ||
else: | ||
logger.info("Measuring maximum increase of memory usage.") | ||
max_usage = memory_usage(func, max_usage=True, interval=interval) | ||
print("Maximum increase of RAM memory usage: %d MiB" % max_usage) | ||
|
||
|
||
if __name__ == "__main__": | ||
measure_memory(inference) |
Oops, something went wrong.