Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added Strassen's Algorithm for matrix multiplication #132

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
182 changes: 182 additions & 0 deletions C++/Strassen's_Algorithm.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,182 @@
#include <bits/stdc++.h>
using namespace std;

#define ROW_1 4
#define COL_1 4

#define ROW_2 4
#define COL_2 4

void print(string display, vector<vector<int> > matrix,
int start_row, int start_column, int end_row,
int end_column)
{
cout << endl << display << " =>" << endl;
for (int i = start_row; i <= end_row; i++) {
for (int j = start_column; j <= end_column; j++) {
cout << setw(10);
cout << matrix[i][j];
}
cout << endl;
}
cout << endl;
return;
}

vector<vector<int> >
add_matrix(vector<vector<int> > matrix_A,
vector<vector<int> > matrix_B, int split_index,
int multiplier = 1)
{
for (auto i = 0; i < split_index; i++)
for (auto j = 0; j < split_index; j++)
matrix_A[i][j]
= matrix_A[i][j]
+ (multiplier * matrix_B[i][j]);
return matrix_A;
}

vector<vector<int> >
multiply_matrix(vector<vector<int> > matrix_A,
vector<vector<int> > matrix_B)
{
int col_1 = matrix_A[0].size();
int row_1 = matrix_A.size();
int col_2 = matrix_B[0].size();
int row_2 = matrix_B.size();

if (col_1 != row_2) {
cout << "\nError: The number of columns in Matrix "
"A must be equal to the number of rows in "
"Matrix B\n";
return {};
}

vector<int> result_matrix_row(col_2, 0);
vector<vector<int> > result_matrix(row_1,
result_matrix_row);

if (col_1 == 1)
result_matrix[0][0]
= matrix_A[0][0] * matrix_B[0][0];
else {
int split_index = col_1 / 2;

vector<int> row_vector(split_index, 0);

vector<vector<int> > a00(split_index, row_vector);
vector<vector<int> > a01(split_index, row_vector);
vector<vector<int> > a10(split_index, row_vector);
vector<vector<int> > a11(split_index, row_vector);
vector<vector<int> > b00(split_index, row_vector);
vector<vector<int> > b01(split_index, row_vector);
vector<vector<int> > b10(split_index, row_vector);
vector<vector<int> > b11(split_index, row_vector);

for (auto i = 0; i < split_index; i++)
for (auto j = 0; j < split_index; j++) {
a00[i][j] = matrix_A[i][j];
a01[i][j] = matrix_A[i][j + split_index];
a10[i][j] = matrix_A[split_index + i][j];
a11[i][j] = matrix_A[i + split_index]
[j + split_index];
b00[i][j] = matrix_B[i][j];
b01[i][j] = matrix_B[i][j + split_index];
b10[i][j] = matrix_B[split_index + i][j];
b11[i][j] = matrix_B[i + split_index]
[j + split_index];
}

vector<vector<int> > p(multiply_matrix(
a00, add_matrix(b01, b11, split_index, -1)));
vector<vector<int> > q(multiply_matrix(
add_matrix(a00, a01, split_index), b11));
vector<vector<int> > r(multiply_matrix(
add_matrix(a10, a11, split_index), b00));
vector<vector<int> > s(multiply_matrix(
a11, add_matrix(b10, b00, split_index, -1)));
vector<vector<int> > t(multiply_matrix(
add_matrix(a00, a11, split_index),
add_matrix(b00, b11, split_index)));
vector<vector<int> > u(multiply_matrix(
add_matrix(a01, a11, split_index, -1),
add_matrix(b10, b11, split_index)));
vector<vector<int> > v(multiply_matrix(
add_matrix(a00, a10, split_index, -1),
add_matrix(b00, b01, split_index)));

vector<vector<int> > result_matrix_00(add_matrix(
add_matrix(add_matrix(t, s, split_index), u,
split_index),
q, split_index, -1));
vector<vector<int> > result_matrix_01(
add_matrix(p, q, split_index));
vector<vector<int> > result_matrix_10(
add_matrix(r, s, split_index));
vector<vector<int> > result_matrix_11(add_matrix(
add_matrix(add_matrix(t, p, split_index), r,
split_index, -1),
v, split_index, -1));

for (auto i = 0; i < split_index; i++)
for (auto j = 0; j < split_index; j++) {
result_matrix[i][j]
= result_matrix_00[i][j];
result_matrix[i][j + split_index]
= result_matrix_01[i][j];
result_matrix[split_index + i][j]
= result_matrix_10[i][j];
result_matrix[i + split_index]
[j + split_index]
= result_matrix_11[i][j];
}

a00.clear();
a01.clear();
a10.clear();
a11.clear();
b00.clear();
b01.clear();
b10.clear();
b11.clear();
p.clear();
q.clear();
r.clear();
s.clear();
t.clear();
u.clear();
v.clear();
result_matrix_00.clear();
result_matrix_01.clear();
result_matrix_10.clear();
result_matrix_11.clear();
}
return result_matrix;
}

int main()
{
vector<vector<int> > matrix_A = { { 1, 1, 1, 1 },
{ 2, 2, 2, 2 },
{ 3, 3, 3, 3 },
{ 2, 2, 2, 2 } };

print("Array A", matrix_A, 0, 0, ROW_1 - 1, COL_1 - 1);

vector<vector<int> > matrix_B = { { 1, 1, 1, 1 },
{ 2, 2, 2, 2 },
{ 3, 3, 3, 3 },
{ 2, 2, 2, 2 } };

print("Array B", matrix_B, 0, 0, ROW_2 - 1, COL_2 - 1);

vector<vector<int> > result_matrix(
multiply_matrix(matrix_A, matrix_B));

print("Result Array", result_matrix, 0, 0, ROW_1 - 1,
COL_2 - 1);
}

// Time Complexity: T(N) = 7T(N/2) + O(N^2) => O(N^Log7)
// which is approximately O(N^2.8074)
// Code Contributed By:Heeba Khan