This repository implements egg object detection using Faster R-CNN with a ResNet-50 backbone.
- Number of GPUs: 4
- Architecture:
- Type: Faster R-CNN
- Backbone: ResNet-50
- Number of Classes: 6
- Type: EggDataLoader
- Arguments:
- Data Directory: "data/"
- Batch Size: 1024
- Shuffle: True
- Validation Split: 0.1
- Number of Workers: 4
- Type: SGD
- Arguments:
- Learning Rate: 0.005
- Momentum: 0.9
- Weight Decay: 0.005
- Cross-Entropy Loss
- Precision, Recall, F1 Score
- Type: StepLR
- Arguments:
- Step Size: 50
- Gamma: 0.1
- Random Rotation: [-45, 45] degrees
- Color Adjustments: Brightness=0.5, Contrast=0.5, Saturation=0.5, Hue=0.5
- Resize: Size=256
- Center Crop: Size=224
- Epochs: 10
- Save Directory: "saved/"
- Save Frequency: Save model every epoch
- Verbosity: Level 2
- Monitoring: Minimize Validation Loss
- Early Stopping: Wait 10 epochs before stopping
- TensorBoard: Enabled
- Data Path: AI-hub Egg Dataset
- Batch Size: 4
- Collate Function: collate_fn_custom
- Number of Classes: 6
- Class Weights: [1.0, 1.5, 1.0, 1.0, 1.0, 1.0]
This project aims to effectively detect various egg objects using Faster R-CNN with a ResNet-50 backbone. The provided configuration includes essential elements for training and evaluating the model on a specific dataset.