Skip to content

Commit

Permalink
LSWT: Goes into more detail about H(q) derivation
Browse files Browse the repository at this point in the history
  • Loading branch information
mducle committed Dec 16, 2024
1 parent e1625c9 commit 670fde8
Showing 1 changed file with 52 additions and 15 deletions.
67 changes: 52 additions & 15 deletions docs/developers/design/001_linear_spinwave_theory.md
Original file line number Diff line number Diff line change
Expand Up @@ -57,13 +57,14 @@ to be described in terms of the local spin ordered moment direction, since it de
We thus define a set of rotation matrices $`R_i^{\alpha}`$ which transforms a spin vector $`\mathbf{S}'_i`$
in the local coordinate system (where $z$ is along the ordered moment direction)
to a vector $`\mathbf{S}_i`$ in a Cartesian coordinate system connected to the crystal lattice
(In SpinW, this Cartesian system is defined by $x \parallel a$, $z \perp (a, c)$ and $y \perp (x, z$):
(In SpinW, this Cartesian system is defined by $x \parallel a$, $z \perp (a, c)$ and $y \perp (x, z$)):

```math
\mathbf{S}_i = R_i \mathbf{S}'_i
```

where $`R_i`$ is a $3 \times 3$ matrix.

Additionally, to more easily map to the operators $S^z$, $S^-$ ($`b^{\dagger}`$) and $S^+$ ($b$) operators above,
we will define the following vectors from the columns of $`R_i`$ for each spin:

Expand Down Expand Up @@ -116,23 +117,59 @@ Thus in the following treatment, $`J_{ij}`$ is a superset and includes both the

Now in the above equation, the sum over site indices $i$ and $j$ extends over all space,
but in SpinW we deal exclusively with periodic (crystalline) systems, so we will separate out each index $i$ ($j$)
into components $i'$ ($j'$) within a unit cell and components $m$ ($n$) between the first and $m^{\mathrm{th}}$ ($n^{\mathrm{th}}$) unit cell.
The sum over sites within the unit cell thus becomes finite, but we still have an infinite sum over unit cells $`\sum_{m,n}`$.
into components $k$ ($l$) within a unit cell and components $m$ ($n$) between the first and $m^{\mathrm{th}}$ ($n^{\mathrm{th}}$) unit cell.
The sum over sites within the unit cell thus becomes finite, but we still have an infinite sum over unit cells $`\sum_{m,n}`$:

```math
\mathcal{H} = \sum_{m,n} \sum_{k, l} \mathbf{S}(\mathbf{r}_{k}+\mathbf{r}_m)
J(\mathbf{r}_{k}+\mathbf{r}_m, \mathbf{r}_{l}-\mathbf{r}_n) \mathbf{S}(\mathbf{r}_{l}+\mathbf{r}_n)
```

As we are looking for wave-like solutions to the Hamiltonian, the next step is thus to perform a Fourier transform to obtain a sum over
$\mathbf{q}$ vectors in the first Brillouin zone.
$\mathbf{q}$ vectors in the first Brillouin zone. The Fourier transform of the spin vector at site $k, m$ is:


```math
\mathbf{S}_{k,m}(\mathbf{q}) = \sum_m \left[ \sum_k \mathbf{S} \exp(-i\mathbf{r}_k\cdot\mathbf{q}) \right] \exp(-i\mathbf{r}_m\cdot\mathbf{q})
```

and similarly for the $n$ indexed terms $`\mathbf{S}_{l}`$. In the next part we will denote the term in square brackets as $`\mathbf{S}_k(\mathbf{q})`$.
In a similar vein, the Fourier transform of the exchange interaction becomes:

```math
J_{kl,mn}(\mathbf{q}) = \sum_m \sum_n
\left[ \sum_k \sum_l J \exp(-i(\mathbf{r}_k - \mathbf{r}_l)\cdot\mathbf{q}) \right] \exp(-i(\mathbf{r}_m - \mathbf{r}_n)\cdot\mathbf{q})
```

And like with the spins the terms in the square brackets will be denoted $`J_{kl}(\mathbf{q})`$.

We can now expressed the Fourier transform of the Heisenberg Hamiltonian:

```math
\mathcal{H}(\mathbf{q}) = \sum_{m,n} \left[ \sum_{k,l} \mathbf{S}_k(\mathbf{q}) J_{kl}(\mathbf{q}) \mathbf{S}_l(\mathbf{q}') \right]
\exp(-i\mathbf{r}_m\cdot\mathbf{q}) \exp(-i\mathbf{r}_n\cdot\mathbf{q}') \exp(-i(\mathbf{r}_m - \mathbf{r}_n)\cdot\mathbf{q})
```

Now we can use the identity $`\sum_{r} \exp(i(\mathbf{q}-\mathbf{q}')\cdot\mathbf{r}) = \delta_{\mathbf{qq}'}`$ to cancel the
$`\mathbf{r}_n`$ terms leaving a single Fourier series in $`\mathbf{r}_m`$.
If we now take the inverse Fourier transform of this, we can replace the sum $`\sum_{mn}`$ by a sum over $\mathbf{q}$, giving:

```math
\mathcal{H} = \sum_{\mathbf{q}} \sum_{k,l} \mathbf{S}_k(\mathbf{q}) J_{kl}(\mathbf{q}) \mathbf{S}_l(\mathbf{q})
```

Expressing the spin vectors in terms of the boson operators using the Holstein-Primakoff transformation above
(and noting that because of the complex conjugation the Fourier transform of the creation operator $`b^{\dagger}`$ is
$`b^{\dagger}(-\mathbf{q})`$):

To do this we first need to re-express the sum over unit cells as a sum over distances
$`\mathbf{r}_m`$ and $`\boldsymbol{\delta}=\mathbf{r}_m - \mathbf{r}_n`$.
After Fourier transforming both the operators $b$, $b^{\dagger}$ and the exchange interactions $J$,
we can use the identity $`\sum_{r} \exp(i(\mathbf{q}-\mathbf{q}')\cdot\mathbf{r}) = \delta_{\mathbf{qq}'}`$ to obtain:

```math
\mathcal{H} = \sum_{\mathbf{q}} \sum_{i',j'} \left[
\sqrt{\frac{S_{i'}}{2}}\left( \mathbf{z}_{i'}^* b_{i'}(\mathbf{q}) + \mathbf{z}_{i'}b_{i'}^{\dagger}(-\mathbf{q}) \right)
+ \boldsymbol{\eta}_i \left( S_{i'} - b_{i'}(\mathbf{q}) b_{i'}^{\dagger}(-\mathbf{q}) \right)
\right]^{\intercal} J(\mathbf{q}) \left[
\sqrt{\frac{S_{j'}}{2}}\left( \mathbf{z}_{j'}^* b_{j'}(\mathbf{q}) + \mathbf{z}_{j'}b_{j'}^{\dagger}(-\mathbf{q}) \right)
+ \boldsymbol{\eta}_j \left( S_{j'} - b_{j'}(\mathbf{q}) b_{j'}^{\dagger}(-\mathbf{q}) \right)
\mathcal{H} = \sum_{\mathbf{q}} \sum_{k,l} \left[
\sqrt{\frac{S_{k}}{2}}\left( \mathbf{z}_{k}^* b_{k}(\mathbf{q}) + \mathbf{z}_{k}b_{k}^{\dagger}(-\mathbf{q}) \right)
+ \boldsymbol{\eta}_i \left( S_{k} - b_{k}(\mathbf{q}) b_{k}^{\dagger}(-\mathbf{q}) \right)
\right]^{\intercal} J_{kl}(\mathbf{q}) \left[
\sqrt{\frac{S_{l}}{2}}\left( \mathbf{z}_{l}^* b_{l}(\mathbf{q}) + \mathbf{z}_{l}b_{l}^{\dagger}(-\mathbf{q}) \right)
+ \boldsymbol{\eta}_j \left( S_{l} - b_{l}(\mathbf{q}) b_{l}^{\dagger}(-\mathbf{q}) \right)
\right]
```

Expand All @@ -142,7 +179,7 @@ where the sum over $`\mathbf{q}`$ extends over both positive and negative vector
Noting that the boson operators obey the commutation relation

```math
[b_{i'}, b_{j'}^{\dagger}] = \delta_{i', j'}
[b_{k}, b_{l}^{\dagger}] = \delta_{k, l}
```

and that the $`\mathbf{z}`$ and $`\boldsymbol{\eta}`$ vectors are perpendicular, we can rewrite the Hamiltonian as a matrix equation
Expand Down

0 comments on commit 670fde8

Please sign in to comment.