This is the official implementation of "GUPNet++: Geometry Uncertainty Propagation Network for Monocular 3D Object Detection".
If you find our work useful in your research, please consider citing:
@article{lu2024gupnet++,
title={Gupnet++: geometry uncertainty propagation network for monocular 3D object detection},
author={Lu, Yan and Ma, Xinzhu and Yang, Lei and Zhang, Tianzhu and Liu, Yating and Chu, Qi and He, Tong and Li, Yonghui and Ouyang, Wanli},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
year={2024},
publisher={IEEE}
}
@article{lu2021geometry,
title={Geometry Uncertainty Projection Network for Monocular 3D Object Detection},
author={Lu, Yan and Ma, Xinzhu and Yang, Lei and Zhang, Tianzhu and Liu, Yating and Chu, Qi and Yan, Junjie and Ouyang, Wanli},
journal={arXiv preprint arXiv:2107.13774},year={2021}}
This project is based on mmdetection3d repository. You can refer to the original mmdetection3d README to install the requirements English | 简体中文. Here we provide our accurate steps corresponding to our experiment environments with specific version packages:
-
install mmcv
pip install mmcv-full==1.6.0
-
install mmdetection
git clone https://github.com/open-mmlab/mmdetection.git cd mmdetection git checkout v2.24.0 # switch to v2.24.0 branch (2.25.0 is also ok) pip install -r requirements/build.txt pip install -v -e . # cd ..
-
install mmsegmentaion
pip install mmsegmentation==0.26.0
-
install mmdetection3d (current repo)
git clone https://github.com/SuperMHP/GUPNet_Plus.git cd GUPNet_Plus pip install -v -e .
-
Downloading datasets.
KITTI, including left color images, camera calibration matrices and training labels.
NuScenes, including Mini, Trainval, Test of Full dataset (v1.0).
-
Putting the datasets as following directory
updating in recent days.
KITTI training for evaluation set
# PyTorch DDP
CUDA_VISIBLE_DEVICES=0,1,2,3 bash tools/dist_train.sh configs/gupnet_plus/gupnet_plus_dla34_kitti.py
# Slurm
GPUS=4 GPUS_PER_NODE=4 bash tools/slurm_train.sh YOUR_PARTITION_NAME configs/gupnet_plus/gupnet_plus_dla34_kitti.py
KITTI training for test set
# PyTorch DDP
CUDA_VISIBLE_DEVICES=0,1,2,3 bash tools/dist_train.sh configs/gupnet_plus/gupnet_plus_dla34_kitti_trainval.py
# Slurm
GPUS=4 GPUS_PER_NODE=4 bash tools/slurm_train.sh YOUR_PARTITION_NAME configs/gupnet_plus/gupnet_plus_dla34_kitti_trainval.py
NuScenes training for evaluation set (DLA34)
# PyTorch DDP
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 bash tools/dist_train.sh configs/gupnet_plus/gupnet_plus_dla34_nuscenes.py
# Slurm
GPUS=8 GPUS_PER_NODE=8 bash tools/dist_train.sh configs/gupnet_plus/gupnet_plus_dla34_nuscenes.py
NuScenes training for evaluation set (HGLS104)
# PyTorch DDP
## node 1
MASTER_ADDR=YOUR_MASTER_ADDR NNODES=2 NODE_RANK=0 CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 bash tools/dist_train.sh configs/gupnet_plus/gupnet_plus_hgls104_nuscenes.py
## node 2
MASTER_ADDR=YOUR_MASTER_ADDR NNODES=2 NODE_RANK=1 CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 bash tools/dist_train.sh configs/gupnet_plus/gupnet_plus_hgls104_nuscenes.py
# Slurm
GPUS=16 GPUS_PER_NODE=8 bash tools/dist_train.sh configs/gupnet_plus/gupnet_plus_hgls104_nuscenes.py
NuScenes training for test set (DLA34)
coming soon
KITTI testing for evaluation set
# PyTorch DDP
CUDA_VISIBLE_DEVICES=0,1,2,3 bash tools/dist_test.sh configs/gupnet_plus/gupnet_plus_dla34_kitti.py XXXXXXX/your_model.pth --eval mAP
# Slurm
GPUS=4 GPUS_PER_NODE=4 bash tools/slurm_test.sh YOUR_PARTITION_NAME configs/gupnet_plus/gupnet_plus_dla34_kitti.py XXXXXXX/your_model.pth --eval mAP
KITTI testing for test set
# 1. PyTorch DDP
CUDA_VISIBLE_DEVICES=0,1,2,3 bash tools/dist_test.sh configs/gupnet_plus/gupnet_plus_dla34_kitti_trainval.py XXXXXXX/your_model.pth --format-only --eval-options 'pklfile_prefix=results/kitti_results/' 'submission_prefix=results/kitti_results/'
# 2. Slurm
GPUS=4 GPUS_PER_NODE=4 bash bash tools/slurn_test.sh configs/gupnet_plus/gupnet_plus_dla34_kitti_trainval.py XXXXXXX/your_model.pth --format-only --eval-options 'pklfile_prefix=results/kitti_results/' 'submission_prefix=results/kitti_results/'
# 3. zip files
zip -r -j submit.zip results/kitti_results/img_bbox
#4. submitting submit.zip on KITTI web
coming soon
If you have any question about this project, please feel free to contact [email protected] or [email protected].