Skip to content

Sylva-Lin/SWCF-Net

Repository files navigation

SWCF-Net

SWCF-Net is accepted by IROS 2024 🎉🎉🎉

Environment

The code has been tested on Ubuntu 20.04 with 1 Nvidia 3090 GPU (24GB memory).

  1. Python 3.8.16

    conda create -n your_env_name python=3.8.16 -y
  2. Install torch 1.10.0 + cu113

    pip install torch==1.10.0+cu113 torchvision==0.11.1+cu113 torchaudio==0.10.0+cu113
  3. nearest_neighbors && cpp_wrappers

    cd utils/nearest_neighbors
    python setup.py install --home="."
    cd ../../
    cd utils/cpp_wrappers
    sh compile_wrappers.sh
    cd ../../../

SemanticKITTI Segmentation

  1. Data: SemanticKITTI dataset can be found here. Download the files related to semantic segmentation and extract everything into the same folder. Uncompress the folder and move it to /data/semantic_kitti/dataset. Run the following command to prepare the dataset.

    python data_prepare.py --src_path your_dataset_path --dst_path your_process_path
  2. Train:

    python train_SemanticKITTI.py --log_dir your_result_path

Citation

If you find SWCF-Net useful to your research, please cite our work as an acknowledgment.

@article{lin2024swcf,
  title={SWCF-Net: Similarity-weighted Convolution and Local-global Fusion for Efficient Large-scale Point Cloud Semantic Segmentation},
  author={Lin, Zhenchao and He, Li and Yang, Hongqiang and Sun, Xiaoqun and Zhang, Cuojin and Chen, Weinan and Guan, Yisheng and Zhang, Hong},
  journal={arXiv preprint arXiv:2406.11441},
  year={2024}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published