SWCF-Net is accepted by IROS 2024 🎉🎉🎉
The code has been tested on Ubuntu 20.04 with 1 Nvidia 3090 GPU (24GB memory).
-
Python 3.8.16
conda create -n your_env_name python=3.8.16 -y
-
Install torch 1.10.0 + cu113
pip install torch==1.10.0+cu113 torchvision==0.11.1+cu113 torchaudio==0.10.0+cu113
-
nearest_neighbors && cpp_wrappers
cd utils/nearest_neighbors python setup.py install --home="." cd ../../
cd utils/cpp_wrappers sh compile_wrappers.sh cd ../../../
-
Data: SemanticKITTI dataset can be found here. Download the files related to semantic segmentation and extract everything into the same folder. Uncompress the folder and move it to
/data/semantic_kitti/dataset
. Run the following command to prepare the dataset.python data_prepare.py --src_path your_dataset_path --dst_path your_process_path
-
Train:
python train_SemanticKITTI.py --log_dir your_result_path
If you find SWCF-Net useful to your research, please cite our work as an acknowledgment.
@article{lin2024swcf,
title={SWCF-Net: Similarity-weighted Convolution and Local-global Fusion for Efficient Large-scale Point Cloud Semantic Segmentation},
author={Lin, Zhenchao and He, Li and Yang, Hongqiang and Sun, Xiaoqun and Zhang, Cuojin and Chen, Weinan and Guan, Yisheng and Zhang, Hong},
journal={arXiv preprint arXiv:2406.11441},
year={2024}
}