This repo serves as an independent nonperiodic system implementation of the original Fingerprint library (fplib3)
- Python >= 3.8.5
- Numpy >= 1.21.4
- Scipy >= 1.8.0
- Numba >= 0.56.2
- ASE >= 3.22.1
For conda installation guide please visit their website
conda create -n fplibenv python=3.8 pip ; conda activate fplibenv
python3 -m pip install --user -U pip setuptools wheel numpy scipy ase numba
git clone https://github.com/Tack-Tau/fplib3.git ./fplib3
See details for ASE calculator class and ASE calculator proposal
Fingerprint Calculator interface for ASE
Implemented Properties:
'energy': Sum of atomic fingerprint distance (L2 norm of two atomic
fingerprint vectors)
'forces': Gradient of fingerprint energy, using Hellmann–Feynman theorem
Parameters:
atoms: object
Attach an atoms object to the calculator.
contract: bool
Calculate fingerprint vector in contracted Guassian-type orbitals or not
ntype: int
Number of different types of atoms in unit cell
nx: int
Maximum number of atoms in the sphere with cutoff radius for specific cell site
lmax: int
Integer to control whether using s orbitals only or both s and p orbitals for
calculating the Guassian overlap matrix (0 for s orbitals only, other integers
will indicate that using both s and p orbitals)
cutoff: float
Cutoff radius for f_c(r) (smooth cutoff function) [amp], unit in Angstroms
For clusters please choose as large as possible to include all the atoms in the structure
import numpy as np
import ase.io
from ase.optimize import BFGS, LBFGS, BFGSLineSearch, QuasiNewton, FIRE
from ase.optimize.sciopt import SciPyFminBFGS, SciPyFminCG
from ase.constraints import StrainFilter, UnitCellFilter
from ase.io.trajectory import Trajectory
from fplib3_api4ase import fp_GD_Calculator
# from fplib3_mixing import MixedCalculator
# from ase.calculators.mixing import MixedCalculator
# from ase.calculators.vasp import Vasp
atoms = ase.io.read('.'+'/'+'POSCAR')
ase.io.vasp.write_vasp('input.vasp', atoms, direct=True)
trajfile = 'opt.traj'
from functools import reduce
chem_nums = list(atoms.numbers)
znucl_list = reduce(lambda re, x: re+[x] if x not in re else re, chem_nums, [])
ntyp = len(znucl_list)
znucl = np.array(znucl_list, int)
calc = fp_GD_Calculator(
cutoff = 10.0,
contract = False,
znucl = znucl,
lmax = 0,
nx = 50, # For clusters choose nx<=len(atoms)
ntyp = ntyp
)
atoms.calc = calc
# calc.test_energy_consistency(atoms = atoms)
# calc.test_force_consistency(atoms = atoms)
print ("fp_energy:\n", atoms.get_potential_energy())
print ("fp_forces:\n", atoms.get_forces())
# print ("fp_stress:\n", atoms.get_stress()) # No stress method implemented
af = atoms
# af = StrainFilter(atoms) # Do not use strain filter for clusters
# af = UnitCellFilter(atoms, scalar_pressure = 0.0) # Do not use unit cell filter for clusters
############################## Relaxation method ##############################\
# opt = BFGS(af, maxstep = 1.e-1, trajectory = trajfile)
opt = FIRE(af, maxstep = 1.e-1, trajectory = trajfile)
# opt = LBFGS(af, maxstep = 1.e-1, trajectory = trajfile, memory = 10, use_line_search = True)
# opt = LBFGS(af, maxstep = 1.e-1, trajectory = trajfile, memory = 10, use_line_search = False)
# opt = SciPyFminCG(af, maxstep = 1.e-1, trajectory = trajfile)
# opt = SciPyFminBFGS(af, maxstep = 1.e-1, trajectory = trajfile)
opt.run(fmax = 1.e-5)
traj = Trajectory(trajfile)
ase.io.write('opt.vasp', traj[-1], direct = True, long_format=True, vasp5 = True)
If you use this Fingerprint Library (or modified version) for your research please kindly cite our paper:
@article{taoAcceleratingStructuralOptimization2024,
title = {Accelerating Structural Optimization through Fingerprinting Space Integration on the Potential Energy Surface},
author = {Tao, Shuo and Shao, Xuecheng and Zhu, Li},
year = {2024},
month = mar,
journal = {J. Phys. Chem. Lett.},
volume = {15},
number = {11},
pages = {3185--3190},
doi = {10.1021/acs.jpclett.4c00275},
url = {https://pubs.acs.org/doi/10.1021/acs.jpclett.4c00275}
}
If you use Fingerprint distance as a metric to measure crystal similarity please also cite the following paper:
@article{zhuFingerprintBasedMetric2016,
title = {A Fingerprint Based Metric for Measuring Similarities of Crystalline Structures},
author = {Zhu, Li and Amsler, Maximilian and Fuhrer, Tobias and Schaefer, Bastian and Faraji, Somayeh and Rostami, Samare and Ghasemi, S. Alireza and Sadeghi, Ali and Grauzinyte, Migle and Wolverton, Chris and Goedecker, Stefan},
year = {2016},
month = jan,
journal = {The Journal of Chemical Physics},
volume = {144},
number = {3},
pages = {034203},
doi = {10.1063/1.4940026},
url = {https://doi.org/10.1063/1.4940026}
}
If you use GOM Fingerprint as a descriptor for developing MLP and other machine-learning related research please also cite the following paper:
@article{sadeghiMetricsMeasuringDistances2013,
title = {Metrics for Measuring Distances in Configuration Spaces},
author = {Sadeghi, Ali and Ghasemi, S. Alireza and Schaefer, Bastian and Mohr, Stephan and Lill, Markus A. and Goedecker, Stefan},
year = {2013},
month = nov,
journal = {The Journal of Chemical Physics},
volume = {139},
number = {18},
pages = {184118},
doi = {10.1063/1.4828704},
url = {https://pubs.aip.org/aip/jcp/article/317391}
}