-
Notifications
You must be signed in to change notification settings - Fork 4.2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
139 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,139 @@ | ||
// Tencent is pleased to support the open source community by making ncnn available. | ||
// | ||
// Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved. | ||
// | ||
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except | ||
// in compliance with the License. You may obtain a copy of the License at | ||
// | ||
// https://opensource.org/licenses/BSD-3-Clause | ||
// | ||
// Unless required by applicable law or agreed to in writing, software distributed | ||
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR | ||
// CONDITIONS OF ANY KIND, either express or implied. See the License for the | ||
// specific language governing permissions and limitations under the License. | ||
|
||
#include "testutil.h" | ||
|
||
static int test_requantize_pack1_oom(const ncnn::Mat& a, int scale_in_data_size, int scale_out_data_size, int bias_data_size, int activation_type, float alpha, float beta) | ||
{ | ||
ncnn::ParamDict pd; | ||
pd.set(0, scale_in_data_size); | ||
pd.set(1, scale_out_data_size); | ||
pd.set(2, bias_data_size); | ||
|
||
ncnn::Mat activation_params(2); | ||
activation_params[0] = alpha; | ||
activation_params[1] = beta; | ||
pd.set(3, activation_type); | ||
pd.set(4, activation_params); | ||
|
||
std::vector<ncnn::Mat> weights(bias_data_size ? 3 : 2); | ||
weights[0] = RandomMat(scale_in_data_size); | ||
weights[1] = RandomMat(scale_out_data_size); | ||
if (bias_data_size) | ||
weights[2] = RandomMat(bias_data_size); | ||
|
||
Randomize(weights[0], 0.0001, 0.001); | ||
Randomize(weights[1], 10, 100); | ||
|
||
int flag = TEST_LAYER_DISABLE_AUTO_INPUT_CASTING | TEST_LAYER_DISABLE_AUTO_INPUT_PACKING; | ||
int ret = test_layer_oom("Requantize", pd, weights, a, flag); | ||
if (ret != 0) | ||
{ | ||
fprintf(stderr, "test_requantize_pack1_oom failed a.dims=%d a=(%d %d %d) scale_in_data_size=%d scale_out_data_size=%d bias_data_size=%d act=%d actparams=[%f,%f]\n", a.dims, a.w, a.h, a.c, scale_in_data_size, scale_out_data_size, bias_data_size, activation_type, activation_params[0], activation_params[1]); | ||
} | ||
|
||
return ret; | ||
} | ||
|
||
static int test_requantize_pack1_oom(const ncnn::Mat& a, int scale_in_data_size, int scale_out_data_size, int bias_data_size) | ||
{ | ||
return 0 | ||
|| test_requantize_pack1_oom(a, scale_in_data_size, scale_out_data_size, bias_data_size, 0, 0.f, 0.f) | ||
|| test_requantize_pack1_oom(a, scale_in_data_size, scale_out_data_size, bias_data_size, 1, 0.f, 0.f) | ||
|| test_requantize_pack1_oom(a, scale_in_data_size, scale_out_data_size, bias_data_size, 2, RandomFloat(0, 1), 0.f) | ||
|| test_requantize_pack1_oom(a, scale_in_data_size, scale_out_data_size, bias_data_size, 3, RandomFloat(-1, 0), RandomFloat(0, 1)) | ||
|| test_requantize_pack1_oom(a, scale_in_data_size, scale_out_data_size, bias_data_size, 4, 0.f, 0.f) | ||
|| test_requantize_pack1_oom(a, scale_in_data_size, scale_out_data_size, bias_data_size, 5, 0.f, 0.f); | ||
} | ||
|
||
static int test_requantize_pack8_oom(const ncnn::Mat& a, int scale_in_data_size, int scale_out_data_size, int bias_data_size, int activation_type, float alpha, float beta) | ||
{ | ||
ncnn::ParamDict pd; | ||
pd.set(0, scale_in_data_size); | ||
pd.set(1, scale_out_data_size); | ||
pd.set(2, bias_data_size); | ||
|
||
ncnn::Mat activation_params(2); | ||
activation_params[0] = alpha; | ||
activation_params[1] = beta; | ||
pd.set(3, activation_type); | ||
pd.set(4, activation_params); | ||
|
||
std::vector<ncnn::Mat> weights(bias_data_size ? 3 : 2); | ||
weights[0] = RandomMat(scale_in_data_size); | ||
weights[1] = RandomMat(scale_out_data_size); | ||
if (bias_data_size) | ||
weights[2] = RandomMat(bias_data_size); | ||
|
||
Randomize(weights[0], 0.0001, 0.001); | ||
Randomize(weights[1], 10, 100); | ||
|
||
int flag = TEST_LAYER_DISABLE_AUTO_INPUT_CASTING | TEST_LAYER_ENABLE_FORCE_INPUT_PACK8; | ||
int ret = test_layer_oom("Requantize", pd, weights, a, flag); | ||
if (ret != 0) | ||
{ | ||
fprintf(stderr, "test_requantize_pack8_oom failed a.dims=%d a=(%d %d %d) scale_in_data_size=%d scale_out_data_size=%d bias_data_size=%d act=%d actparams=[%f,%f]\n", a.dims, a.w, a.h, a.c, scale_in_data_size, scale_out_data_size, bias_data_size, activation_type, activation_params[0], activation_params[1]); | ||
} | ||
|
||
return ret; | ||
} | ||
|
||
static int test_requantize_pack8_oom(const ncnn::Mat& a, int scale_in_data_size, int scale_out_data_size, int bias_data_size) | ||
{ | ||
return 0 | ||
|| test_requantize_pack8_oom(a, scale_in_data_size, scale_out_data_size, bias_data_size, 0, 0.f, 0.f) | ||
|| test_requantize_pack8_oom(a, scale_in_data_size, scale_out_data_size, bias_data_size, 1, 0.f, 0.f) | ||
|| test_requantize_pack8_oom(a, scale_in_data_size, scale_out_data_size, bias_data_size, 2, RandomFloat(0, 1), 0.f) | ||
|| test_requantize_pack8_oom(a, scale_in_data_size, scale_out_data_size, bias_data_size, 3, RandomFloat(-1, 0), RandomFloat(0, 1)) | ||
|| test_requantize_pack8_oom(a, scale_in_data_size, scale_out_data_size, bias_data_size, 4, 0.f, 0.f) | ||
|| test_requantize_pack8_oom(a, scale_in_data_size, scale_out_data_size, bias_data_size, 5, 0.f, 0.f); | ||
} | ||
|
||
static int test_requantize_0() | ||
{ | ||
return 0 | ||
|| test_requantize_pack1_oom(RandomIntMat(7, 9, 12), 12, 12, 12) | ||
|| test_requantize_pack1_oom(RandomIntMat(3, 5, 13), 13, 13, 13); | ||
} | ||
|
||
static int test_requantize_1() | ||
{ | ||
return 0 | ||
|| test_requantize_pack1_oom(RandomIntMat(17, 12), 12, 12, 12) | ||
|| test_requantize_pack1_oom(RandomIntMat(19, 15), 15, 15, 15); | ||
} | ||
|
||
static int test_requantize_2() | ||
{ | ||
return test_requantize_pack1_oom(RandomIntMat(124), 1, 1, 1); | ||
} | ||
|
||
static int test_requantize_3() | ||
{ | ||
return 0 | ||
|| test_requantize_pack8_oom(RandomIntMat(5, 7, 24), 24, 24, 24) | ||
|| test_requantize_pack8_oom(RandomIntMat(15, 24), 24, 24, 24) | ||
|| test_requantize_pack8_oom(RandomIntMat(128), 1, 1, 1); | ||
} | ||
|
||
int main() | ||
{ | ||
SRAND(7767517); | ||
|
||
return 0 | ||
|| test_requantize_0() | ||
|| test_requantize_1() | ||
|| test_requantize_2() | ||
|| test_requantize_3(); | ||
} |