forked from neo-ai/tvm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[CUDA]batch_matmul tensorcore schedule (apache#7146)
* add batch_matmul_tensorcore * add bmm cublas autotune * add bmm tests * out_shape for bmm_tensorcore * fix comments * code format * add todos for tensorcore datatype checking * fix lint * fix have_tensorcore * add dtype check for batch_matmul_tensorcore
- Loading branch information
Showing
8 changed files
with
422 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,315 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
# pylint: disable=invalid-name,too-many-locals,unused-variable,unused-argument | ||
"""cuda batch_matmul operators""" | ||
import tvm | ||
from tvm import autotvm | ||
from tvm import te | ||
from ..utils import traverse_inline, get_const_tuple | ||
from .tensor_intrin import ( | ||
intrin_wmma_load_matrix_A, | ||
intrin_wmma_load_matrix_W, | ||
intrin_wmma_store_matrix, | ||
intrin_wmma_gemm, | ||
) | ||
|
||
|
||
@autotvm.register_topi_compute("batch_matmul_tensorcore.cuda") | ||
def batch_matmul_tensorcore(cfg, x, y, out_shape=None): | ||
"""batch matmul tensorcore operator on cuda""" | ||
# todo: deal with out_shape for broadcast, liuxin.ai | ||
return batch_matmul_tensorcore_cuda(x, y) | ||
|
||
|
||
@autotvm.register_topi_schedule("batch_matmul_tensorcore.cuda") | ||
def schedule_batch_matmul_tensorcore(cfg, outs): | ||
"""Schedule for batch_matmul operator using Tensorcore | ||
Parameters | ||
---------- | ||
outs: Array of Tensor | ||
The computation graph description of batch_matmul | ||
in the format of an array of tensors. | ||
Returns | ||
------- | ||
s: Schedule | ||
The computation schedule for the op. | ||
""" | ||
outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs | ||
s = te.create_schedule([x.op for x in outs]) | ||
|
||
def _schedule(cfg, s, C): | ||
A, B = s[C].op.input_tensors | ||
batch, m_dim, k_dim = get_const_tuple(A.shape) | ||
batch, n_dim, k_dim = get_const_tuple(B.shape) | ||
out_dtype = C.dtype | ||
# inline astype fp16 | ||
s[A].compute_inline() | ||
s[B].compute_inline() | ||
|
||
# Explicit memory access | ||
AS = s.cache_read(A, "shared", [C]) | ||
BS = s.cache_read(B, "shared", [C]) | ||
AF = s.cache_read(AS, "wmma.matrix_a", [C]) | ||
BF = s.cache_read(BS, "wmma.matrix_b", [C]) | ||
CF = s.cache_write(C, "wmma.accumulator") | ||
CS = s.cache_read(CF, "shared", [C]) | ||
|
||
# fallback support | ||
target = tvm.target.Target.current() | ||
if cfg.is_fallback: | ||
ref_log = autotvm.tophub.load_reference_log( | ||
target.kind.name, target.model, "batch_matmul_tensorcore.cuda" | ||
) | ||
cfg.fallback_with_reference_log(ref_log) | ||
|
||
# Deal with op fusion, such as bias/relu and slice after padding | ||
if C.op not in s.outputs and "injective" in s.outputs[0].tag: | ||
s[C].compute_inline() | ||
C = s.outputs[0].output(0) | ||
|
||
# create tuning space | ||
cfg.define_knob("block_row_warps", [1, 2, 4]) | ||
cfg.define_knob("block_col_warps", [1, 2, 4]) | ||
cfg.define_knob("warp_row_tiles", [1, 2, 4]) | ||
cfg.define_knob("warp_col_tiles", [1, 2, 4]) | ||
cfg.define_knob("chunk", [1, 2, 4, 8]) | ||
cfg.define_knob("offset", [0, 8]) | ||
cfg.define_knob("offsetCS", [0, 8]) | ||
cfg.define_knob("vec", [1, 2, 4, 8]) | ||
|
||
# Ensure that the default parameters are applicable when autotvm is not in use | ||
if m_dim % 32 == 0 and n_dim % 8 == 0: | ||
cfg.define_knob("wmma_m", [32, 16, 8]) | ||
elif m_dim % 16 == 0 and n_dim % 16 == 0: | ||
cfg.define_knob("wmma_m", [16, 8, 32]) | ||
elif m_dim % 8 == 0 and n_dim % 32 == 0: | ||
cfg.define_knob("wmma_m", [8, 16, 32]) | ||
|
||
warp_size = 32 | ||
wmma_k = 16 | ||
block_row_warps = cfg["block_row_warps"].val | ||
block_col_warps = cfg["block_col_warps"].val | ||
warp_row_tiles = cfg["warp_row_tiles"].val | ||
warp_col_tiles = cfg["warp_col_tiles"].val | ||
chunk = cfg["chunk"].val | ||
offset = cfg["offset"].val | ||
offsetCS = cfg["offsetCS"].val | ||
wmma_m = cfg["wmma_m"].val | ||
vec = cfg["vec"].val | ||
|
||
if wmma_m == 16: | ||
wmma_n = 16 | ||
elif wmma_m == 8: | ||
wmma_n = 32 | ||
elif wmma_m == 32: | ||
wmma_n = 8 | ||
|
||
# Define the stride of intrin functions | ||
AS_align = chunk * wmma_k + offset | ||
BS_align = chunk * wmma_k + offset | ||
CS_align = warp_col_tiles * block_col_warps * wmma_n + offsetCS | ||
AS_stride = [AS_align, 1] | ||
BS_stride = [BS_align, 1] | ||
AF_stride = [wmma_k, 1] | ||
BF_stride = [wmma_k, 1] | ||
CF_stride = [warp_col_tiles * wmma_n, 1] | ||
CS_stride = [CS_align, 1] | ||
|
||
block_x = te.thread_axis("blockIdx.x") | ||
block_y = te.thread_axis("blockIdx.y") | ||
block_z = te.thread_axis("blockIdx.z") | ||
thread_x = te.thread_axis("threadIdx.x") | ||
thread_y = te.thread_axis("threadIdx.y") | ||
thread_z = te.thread_axis("threadIdx.z") | ||
|
||
# Schedule for dense computation | ||
block_factor_m = wmma_m * warp_row_tiles * block_row_warps | ||
block_factor_n = wmma_n * warp_col_tiles * block_col_warps | ||
b, m, n = C.op.axis | ||
block_i, bc = s[C].split(m, factor=block_factor_m) | ||
block_j, oc = s[C].split(n, factor=block_factor_n) | ||
s[C].reorder(b, block_i, block_j, bc, oc) | ||
t = s[C].fuse(bc, oc) | ||
t, vi = s[C].split(t, factor=vec) | ||
t, tx = s[C].split(t, factor=warp_size) | ||
t, ty = s[C].split(t, factor=block_row_warps) | ||
t, tz = s[C].split(t, factor=block_col_warps) | ||
s[C].bind(block_i, block_x) | ||
s[C].bind(block_j, block_y) | ||
s[C].bind(b, block_z) | ||
s[C].bind(tz, thread_z) | ||
s[C].bind(ty, thread_y) | ||
s[C].bind(tx, thread_x) | ||
s[C].vectorize(vi) | ||
|
||
# Schedule for wmma store | ||
s[CS].compute_at(s[C], block_j) | ||
bs, bb, oo = CS.op.axis | ||
s[CS].storage_align(bb, CS_align - 1, CS_align) | ||
bb, bbi = s[CS].split(bb, factor=wmma_m) | ||
oo, ooi = s[CS].split(oo, factor=wmma_n) | ||
bb, bbii = s[CS].split(bb, factor=warp_row_tiles) | ||
oo, ooii = s[CS].split(oo, factor=warp_col_tiles) | ||
s[CS].reorder(bs, bb, oo, bbii, ooii, bbi, ooi) | ||
|
||
# Schedule for wmma computation | ||
s[CF].compute_at(s[CS], oo) | ||
bs, warp_i, warp_j = CF.op.axis | ||
warp_i, _ii = s[CF].split(warp_i, factor=wmma_m) | ||
warp_j, _jj = s[CF].split(warp_j, factor=wmma_n) | ||
(k,) = CF.op.reduce_axis | ||
k, _k = s[CF].split(k, factor=wmma_k) | ||
ko, ki = s[CF].split(k, factor=chunk) | ||
s[CF].reorder(bs, ko, ki, warp_i, warp_j, _ii, _jj, _k) | ||
|
||
# Schedule for wmma_matrix_a load | ||
s[AF].compute_at(s[CF], ki) | ||
bs, b, i = AF.op.axis | ||
b, b_ii = s[AF].split(b, factor=wmma_m) | ||
i, i_jj = s[AF].split(i, factor=wmma_k) | ||
s[AF].reorder(bs, b, i, b_ii, i_jj) | ||
|
||
# Schedule for wmma_matrix_b load | ||
s[BF].compute_at(s[CF], ki) | ||
bs, o, i = BF.op.axis | ||
o, o_ii = s[BF].split(o, factor=wmma_n) | ||
i, i_ii = s[BF].split(i, factor=wmma_k) | ||
s[BF].reorder(bs, o, i, o_ii, i_ii) | ||
|
||
# Schedule for A's(B's) shared memory load | ||
def shared_shedule(stage, strides): | ||
s[stage].compute_at(s[CF], ko) | ||
bs, xo, yo = stage.op.axis | ||
s[stage].storage_align(xo, strides - 1, strides) | ||
t = s[stage].fuse(xo, yo) | ||
t, vi = s[stage].split(t, factor=vec) | ||
t, tx = s[stage].split(t, factor=warp_size) | ||
t, ty = s[stage].split(t, factor=block_row_warps) | ||
_, tz = s[stage].split(t, factor=block_col_warps) | ||
s[stage].bind(ty, thread_y) | ||
s[stage].bind(tz, thread_z) | ||
s[stage].bind(tx, thread_x) | ||
s[stage].vectorize(vi) | ||
|
||
shared_shedule(AS, AS_align) | ||
shared_shedule(BS, BS_align) | ||
|
||
shape = (wmma_m, wmma_n, wmma_k) | ||
# TODO: add checking here, datatype casting may cause precision loss | ||
in_dtype = "float16" | ||
AL_gemm = te.placeholder((wmma_m, wmma_k), name="AL_gemm", dtype=in_dtype) | ||
BL_gemm = te.placeholder((wmma_n, wmma_k), name="BL_gemm", dtype=in_dtype) | ||
k_gemm = te.reduce_axis((0, wmma_k), name="k_gemm") | ||
CL_compute = te.compute( | ||
(wmma_m, wmma_n), | ||
lambda ii, jj: te.sum( | ||
AL_gemm[ii, k_gemm].astype(out_dtype) * BL_gemm[jj, k_gemm].astype(out_dtype), | ||
axis=k_gemm, | ||
), | ||
name="CL_compute", | ||
) | ||
|
||
# lower the computation loops down to TensorCore hardware intrinsics | ||
# by mapping the dense tensorcore to tensor intrinsics | ||
s[AF].tensorize( | ||
b_ii, | ||
intrin_wmma_load_matrix_A( | ||
AF_stride, | ||
AS_stride, | ||
shape, | ||
"row_major", | ||
(wmma_m, wmma_k), | ||
(wmma_m, wmma_k), | ||
"float16", | ||
), | ||
) | ||
s[BF].tensorize( | ||
o_ii, | ||
intrin_wmma_load_matrix_W( | ||
BF_stride, | ||
BS_stride, | ||
shape, | ||
"col_major", | ||
(wmma_n, wmma_k), | ||
(wmma_n, wmma_k), | ||
"float16", | ||
), | ||
) | ||
s[CF].tensorize( | ||
_ii, | ||
intrin_wmma_gemm(AL_gemm, BL_gemm, CL_compute, AF_stride, BF_stride, CF_stride, shape), | ||
) | ||
s[CS].tensorize( | ||
bbi, | ||
intrin_wmma_store_matrix( | ||
CS_stride, CF_stride, shape, out_dtype, (wmma_m, wmma_n), (wmma_m, wmma_n) | ||
), | ||
) | ||
|
||
def _callback(op): | ||
if "batch_matmul_tensorcore" in op.tag: | ||
_schedule(cfg, s, op.output(0)) | ||
|
||
traverse_inline(s, outs[0].op, _callback) | ||
return s | ||
|
||
|
||
def batch_matmul_tensorcore_cuda(x, y): | ||
"""Computes batch matrix multiplication of `x` and `y` when `x` and `y` are | ||
data in batch. | ||
Parameters | ||
---------- | ||
x : tvm.te.Tensor | ||
3-D with shape [batch, M, K] | ||
y : tvm.te.Tensor | ||
3-D with shape [batch, N, K] | ||
Returns | ||
------- | ||
output : tvm.te.Tensor | ||
3-D with shape [batch, M, N] | ||
""" | ||
assert len(x.shape) == 3 and len(y.shape) == 3, "only support 3-dim batch_matmul" | ||
x_shape = get_const_tuple(x.shape) | ||
y_shape = get_const_tuple(y.shape) | ||
assert x_shape[0] == y_shape[0], "batch dimension doesn't match" | ||
assert x_shape[2] == y_shape[2], "shapes of x and y is inconsistant" | ||
batch, M, K = x.shape | ||
N = y.shape[1] | ||
out_dtype = x.dtype | ||
|
||
assert ( | ||
(M % 8 == 0 and K % 16 == 0 and N % 32 == 0) | ||
or (M % 16 == 0 and K % 16 == 0 and N % 16 == 0) | ||
or (M % 32 == 0 and K % 16 == 0 and N % 8 == 0) | ||
), "The shape of (M, K, N) must be multiple of (16, 16, 16) or (32, 16, 8) or (8, 16, 32)" | ||
|
||
x_16 = te.compute((batch, M, K), lambda b, i, k: x[b, i, k].astype("float16")) | ||
y_16 = te.compute((batch, N, K), lambda b, j, k: y[b, j, k].astype("float16")) | ||
|
||
k = te.reduce_axis((0, K), name="k") | ||
return te.compute( | ||
(batch, M, N), | ||
lambda b, i, j: te.sum( | ||
x_16[b, i, k].astype(out_dtype) * y_16[b, j, k].astype(out_dtype), axis=k | ||
), | ||
tag="batch_matmul_tensorcore", | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.