Skip to content

Commit

Permalink
[fix] Fix model loading inconsistency after Peft training by using Pe…
Browse files Browse the repository at this point in the history
…ftModel (#2980)

* Fix 'module object is not callable' error by changing to relative imports in Matryoshka2dLoss.py

* run formatter

* add: Load fine-tuned model by Peft and LoRa

* fix: must run peft load test

* fix: Using PeftConfig and PeftModel

* fix: Remove unnecessary peft package check implementation

* fix: remove peft

* fix: bug

* fix: delete breakpoint and monkeypatch

* fix: run format

* fix: format

* fix: add peft in dev environment

* add: More test cases to verify if the encoded vectors match before and after the model is saved and loaded.

* fix: format

* Rely on is_peft_available more, error if backend != "torch"

Also load a PEFT model if we have a T5 or MT5 model

---------

Co-authored-by: ryoji.nagata <[email protected]>
Co-authored-by: Tom Aarsen <[email protected]>
  • Loading branch information
3 people authored Nov 8, 2024
1 parent 7be3eac commit 6baee57
Show file tree
Hide file tree
Showing 3 changed files with 63 additions and 4 deletions.
4 changes: 2 additions & 2 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@ dependencies = [
"scikit-learn",
"scipy",
"huggingface-hub>=0.20.0",
"Pillow",
"Pillow"
]

[project.urls]
Expand All @@ -51,7 +51,7 @@ train = ["datasets", "accelerate>=0.20.3"]
onnx = ["optimum[onnxruntime]>=1.23.1"]
onnx-gpu = ["optimum[onnxruntime-gpu]>=1.23.1"]
openvino = ["optimum-intel[openvino]>=1.20.0"]
dev = ["datasets", "accelerate>=0.20.3", "pre-commit", "pytest", "pytest-cov"]
dev = ["datasets", "accelerate>=0.20.3", "pre-commit", "pytest", "pytest-cov", "peft"]

[build-system]
requires = ["setuptools>=42", "wheel"]
Expand Down
36 changes: 34 additions & 2 deletions sentence_transformers/models/Transformer.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,8 @@
import torch
from torch import nn
from transformers import AutoConfig, AutoModel, AutoTokenizer, MT5Config, T5Config
from transformers.utils import is_peft_available
from transformers.utils.import_utils import is_peft_available
from transformers.utils.peft_utils import find_adapter_config_file

logger = logging.getLogger(__name__)

Expand Down Expand Up @@ -73,7 +74,7 @@ def __init__(
if config_args is None:
config_args = {}

config = AutoConfig.from_pretrained(model_name_or_path, **config_args, cache_dir=cache_dir)
config = self._load_config(model_name_or_path, cache_dir, backend, config_args)
self._load_model(model_name_or_path, config, cache_dir, backend, **model_args)

if max_seq_length is not None and "model_max_length" not in tokenizer_args:
Expand All @@ -98,6 +99,26 @@ def __init__(
if tokenizer_name_or_path is not None:
self.auto_model.config.tokenizer_class = self.tokenizer.__class__.__name__

def _load_config(self, model_name_or_path: str, cache_dir: str | None, backend: str, config_args: dict[str, Any]):
"""Loads the configuration of a model"""
if find_adapter_config_file(model_name_or_path) is not None:
if not is_peft_available():
raise Exception(
"Loading a PEFT model requires installing the `peft` package. You can install it via `pip install peft`."
)
if backend != "torch":
# TODO: Consider following these steps automatically so we can load PEFT models with other backends
raise ValueError(
"PEFT models can currently only be loaded with the `torch` backend. "
'To use other backends, load the model with `backend="torch"`, call `model[0].auto_model.merge_and_unload()`, '
"save that model with `model.save_pretrained()` and then load the model with the desired backend."
)
from peft import PeftConfig

return PeftConfig.from_pretrained(model_name_or_path, **config_args, cache_dir=cache_dir)

return AutoConfig.from_pretrained(model_name_or_path, **config_args, cache_dir=cache_dir)

def _load_model(self, model_name_or_path, config, cache_dir, backend, **model_args) -> None:
"""Loads the transformer model"""
if backend == "torch":
Expand All @@ -109,13 +130,23 @@ def _load_model(self, model_name_or_path, config, cache_dir, backend, **model_ar
self.auto_model = AutoModel.from_pretrained(
model_name_or_path, config=config, cache_dir=cache_dir, **model_args
)
self._load_peft_model(model_name_or_path, config, cache_dir, **model_args)
elif backend == "onnx":
self._load_onnx_model(model_name_or_path, config, cache_dir, **model_args)
elif backend == "openvino":
self._load_openvino_model(model_name_or_path, config, cache_dir, **model_args)
else:
raise ValueError(f"Unsupported backend '{backend}'. `backend` should be `torch`, `onnx`, or `openvino`.")

def _load_peft_model(self, model_name_or_path, config, cache_dir, **model_args) -> None:
if is_peft_available():
from peft import PeftConfig, PeftModel

if isinstance(config, PeftConfig):
self.auto_model = PeftModel.from_pretrained(
self.auto_model, model_name_or_path, config=config, cache_dir=cache_dir, **model_args
)

def _load_openvino_model(self, model_name_or_path, config, cache_dir, **model_args) -> None:
if isinstance(config, T5Config) or isinstance(config, MT5Config):
raise ValueError("T5 models are not yet supported by the OpenVINO backend.")
Expand Down Expand Up @@ -307,6 +338,7 @@ def _backend_should_export(
logger.warning(
f"No {file_name!r} found in {load_path.as_posix()!r}. Exporting the model to {backend_name}."
)

if model_file_names:
logger.warning(
f"If you intended to load one of the {model_file_names} {backend_name} files, "
Expand Down
27 changes: 27 additions & 0 deletions tests/test_sentence_transformer.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@
import pytest
import torch
from huggingface_hub import CommitInfo, HfApi, RepoUrl
from peft import PeftModel
from torch import nn

from sentence_transformers import SentenceTransformer, util
Expand Down Expand Up @@ -416,6 +417,32 @@ def transformers_init(*args, **kwargs):
assert transformer_kwargs["model_args"]["attn_implementation"] == "eager"


def test_load_checkpoint_with_peft_and_lora() -> None:
from peft import LoraConfig, TaskType

peft_config = LoraConfig(
target_modules=["query", "key", "value"],
task_type=TaskType.FEATURE_EXTRACTION,
inference_mode=False,
r=8,
lora_alpha=32,
lora_dropout=0.1,
)

with SafeTemporaryDirectory() as tmp_folder:
model = SentenceTransformer("sentence-transformers-testing/stsb-bert-tiny-safetensors")
model._modules["0"].auto_model.add_adapter(peft_config)
model.save(tmp_folder)
expecteds = model.encode(["Hello there!", "How are you?"], convert_to_tensor=True)

loaded_peft_model = SentenceTransformer(tmp_folder)
actuals = loaded_peft_model.encode(["Hello there!", "How are you?"], convert_to_tensor=True)

assert isinstance(model._modules["0"].auto_model, nn.Module)
assert isinstance(loaded_peft_model._modules["0"].auto_model, PeftModel)
assert torch.equal(expecteds, actuals)


@pytest.mark.skipif(not torch.cuda.is_available(), reason="CUDA must be available to test float16 support.")
def test_encode_fp16() -> None:
tiny_model = SentenceTransformer("sentence-transformers-testing/stsb-bert-tiny-safetensors")
Expand Down

0 comments on commit 6baee57

Please sign in to comment.