Skip to content

ValoraY/rd4ad_change

Repository files navigation

CVPR2022 - Anomaly Detection via Reverse Distillation from One-Class Embedding

  1. Environment

    python=3.8
    torch1.10.0+cu113
    torchvision0.11.0+cu113
    scikit-learn
    opencv-python
    scikit-image
    pandas
    
  2. Dataset

    MVTec_AD
    DATASET_HUAWEI
    
  3. Download pretain weights

    autodl: https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth => /root/.cache/torch/hub/checkpoints/
    
  4. Train and Test the Model

    python main.py

  5. results:

    1. make first conv1 (which achieves downsample from 224 to 112) of pretrained feature extracter wide_Resnet50 from Conv2d(k7x7,s2,p3) to row_Conv【Conv2d(k1x7,s(1,2),p(0,3))】 & col_Conv【Conv2d(k7x1,s(2,1),p(3,0))】 => fiber auroc:0.67 (epoch=250) => bad

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages