Skip to content

The official repo for [TPAMI'23] "Vision Transformer with Quadrangle Attention"

License

Notifications You must be signed in to change notification settings

ViTAE-Transformer/QFormer

Repository files navigation

[TPAMI 2023] Vision Transformer with Quadrangle Attention

This is the official repository of the paper Vision Transformer with Quadrangle Attention.

Qiming Zhang, Jing Zhang, Yufei Xu, and Dacheng Tao

News | Abstract | Method | Usage | Results | Statement

Current applications

Classification: Hierarchical models has been released; Plain ones will be released soon.

Object Detection: Will be released soon;

Semantic Segmentation: Will be released soon;

Human Pose: Will be released soon

News

24/01/2024

  • The code of hierarchical models on classification has been released.

30/12/2023

  • The paper is accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) with IF 24.314.

27/03/2023

  • The paper is post on arxiv! The code will be made public available once cleaned up.

Abstract

This repository contains the code, models, test results for the paper Vision Transformer with Quadrangle Attention, which is an substantial extention of our ECCV 2022 paper VSA. We extends the window-based attention to a general quadrangle formulation and propose a novel quadrangle attention. We employs an end-to-end learnable quadrangle regression module that predicts a transformation matrix to transform default windows into target quadrangles for token sampling and attention calculation, enabling the network to model various targets with different shapes and orientations and capture rich context information. With minor code modifications and negligible extra computational cost, our QFormer outperforms existing representative (hierarchical and plain) vision transformers on various vision tasks, including classification, object detection, semantic segmentation, and pose estimation.

Method

Fig.1 - The comparison of the current design (hand-crafted windows) and Quadrange attention.

Fig.2 - The pipeline of our proposed quadrangle attention (QA).

Fig.3 - The transformation process in quadrangle attention.

Fig.4 - The architecture of our plain QFormerp (a) and hierarchical QFormerh (b).

Usage

Requirements

  • PyTorch==1.7.1
  • torchvision==0.8.2
  • timm==0.3.2

The Apex is optional for faster training speed.

git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

Other Requirements

pip install opencv-python==4.4.0.46 termcolor==1.1.0 yacs==0.1.8 timm==0.4.9
pip install einops

Train & Eval

For classification on ImageNet-1K, to train from scratch, run:

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python -m torch.distributed.launch \
  --nnodes ${NNODES} \
  --node_rank ${SLURM_NODEID} \
  --master_addr ${MHOST} \
  --master_port 25901 \
  --nproc_per_node 8 \
  ./main.py \
  --cfg configs/swin/qformer_tiny_patch4_window7_224.yaml \
  --data-path ${IMAGE_PATH} \
  --batch-size 128 \
  --tag 1024-dpr20-coords_lambda1e-1 \
  --distributed \
  --coords_lambda 1e-1 \
  --drop_path_rate 0.2 \

For single GPU training, run

python ./main.py \
  --cfg configs/swin/qformer_tiny_patch4_window7_224.yaml \
  --data-path ${IMAGE_PATH} \
  --batch-size 128 \
  --tag 1024-dpr20-coords_lambda1e-1 \
  --coords_lambda 1e-1 \
  --drop_path_rate 0.2 \

To evaluate, run:

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python -m torch.distributed.launch \
  --nnodes ${NNODES} \
  --node_rank ${SLURM_NODEID} \
  --master_addr ${MHOST} \
  --master_port 25901 \
  --nproc_per_node 8 \
  ./main.py \
  --cfg configs/swin/qformer_tiny_patch4_window7_224.yaml \
  --data-path ${IMAGE_PATH} \
  --batch-size 128 \
  --tag eval \
  --distributed \
  --resume ${MODEL PATH} \
  --eval

For single GPU evaluation, run

python ./main.py \
  --cfg configs/swin/qformer_tiny_patch4_window7_224.yaml \
  --data-path ${IMAGE_PATH} \
  --batch-size 128 \
  --tag eval \
  --resume ${MODEL PATH} \
  --eval

Results

Results on plain models

Classification results on ImageNet-1K with MAE pretrained models

model resolution acc@1 Weights & Logs
ViT-B + Window attn 224x224 81.2 \
ViT-B + Shifted window 224x224 82.0 \
QFormerp-B 224x224 82.9 Coming soon

Detection results on COCO with MAE pretrained models and the Mask RCNN detector, following ViTDet

model box mAP mask mAP Params Weights & Logs
ViTDet-B 51.6 45.9 111M \
QFormerp-B 52.3 46.6 111M Coming soon

Semantic segmentation results on ADE20k with MAE pretrained models and the UPerNet segmentor

model image size mIoU mIoU* Weights & Logs
ViT-B + window attn 512x512 39.7 41.8 \
ViT-B + shifted window attn 512x512 41.6 43.6 \
QFormerp-B 512x512 43.6 45.0 Coming soon
ViT-B + window attn 640x640 40.2 41.5 \
ViT-B + shifted window attn 640x640 42.3 43.5 \
QFormerp-B 640x640 44.9 46.0 Coming soon

Human pose estimation results on COCO with MAE pretrained models, following ViTPose

attention model AP AP50 AR AR50 Weights & Logs
Window ViT-B 66.4 87.7 72.9 91.9 \
Shifted window ViT-B 76.4 90.9 81.6 94.5 \
Quadrangle ViT-B 77.0 90.9 82.0 94.7 Coming soon
Window + Full ViT-B 76.9 90.8 82.1 94.7 \
Shifted window + Full ViT-B 77.2 90.9 82.2 94.7 \
Quadrangle + Full ViT-B 77.4 91.0 82.4 94.9 Coming soon

Results on hierarchical models

Main Results on ImageNet-1K

name resolution acc@1 acc@5 acc@RealTop-1 Weights & Logs
Swin-T 224x224 81.2 \ \ \
DW-T 224x224 82.0 \ \ \
Focal-T 224x224 82.2 95.9
QFormerh-T 224x224 82.5 96.2 87.5 model & logs
Swin-S 224x224 83.2 96.2 \ \
Focal-S 224x224 83.5 96.2 \ \
QFormerh-S 224x224 84.0 96.8 88.6 model & logs
Swin-B 224x224 83.4 96.5 \ \
DW-B 224x224 83.4 \ \ \
Focal-B 224x224 83.8 96.5 \ \
QFormerh-B 224x224 84.1 96.8 88.7 model & logs

Object Detection Results

Mask R-CNN

Backbone Pretrain Lr Schd box mAP mask mAP #params config log model
Swin-T ImageNet-1K 1x 43.7 39.8 48M \ \ \
DAT-T ImageNet-1K 1x 44.4 40.4 48M \ \ \
Focal-T ImageNet-1K 1x 44.8 41.0 49M \ \ \
QFormerh-T ImageNet-1K 1x 45.9 41.5 49M config log onedrive
Swin-T ImageNet-1K 3x 46.0 41.6 48M \ \ \
DW-T ImageNet-1K 3x 46.7 42.4 49M \ \ \
DAT-T ImageNet-1K 3x 47.1 42.4 48M \ \ \
DAT-T ImageNet-1K 3x 47.1 42.4 48M \ \ \
QFormerh-T ImageNet-1K 3x 47.5 42.7 49M config log onedrive
Swin-S ImageNet-1K 3x 48.5 43.3 69M \ \ \
Focal-S ImageNet-1K 3x 48.8 43.8 71M \ \ \
DAT-S ImageNet-1K 3x 49.0 44.0 69M \ \ \
QFormerh-S ImageNet-1K 3x 49.5 44.2 70M config log onedrive

Cascade Mask R-CNN

Backbone Pretrain Lr Schd box mAP mask mAP #params config log model
Swin-T ImageNet-1K 1x 48.1 41.7 86M \ \ \
DAT-T ImageNet-1K 1x 49.1 42.5 86M \ \ \
QFormerh-T ImageNet-1K 1x 49.8 43.0 87M config log onedrive
Swin-T ImageNet-1K 3x 50.2 43.7 86M \ \ \
QFormerh-T ImageNet-1K 3x 51.4 44.7 87M config log onedrive
Swin-S ImageNet-1K 3x 51.9 45.0 107M \ \ \
QFormerh-S ImageNet-1K 3x 52.8 45.7 108M config log onedrive

Semantic Segmentation Results for ADE20k

UperNet

Backbone Pretrain Lr Schd mIoU mIoU* #params config log model
Swin-T ImageNet-1k 160k 44.5 45.8 60M \ \ \
DAT-T ImageNet-1k 160k 45.5 46.4 60M \ \ \
DW-T ImageNet-1k 160k 45.7 46.9 61M \ \ \
Focal-T ImageNet-1k 160k 45.8 47.0 62M \ \ \
QFormerh-T ImageNet-1k 160k 46.9 48.1 61M Coming soon Coming soon Coming soon
Swin-S ImageNet-1k 160k 47.6 49.5 81M \ \ \
DAT-S ImageNet-1k 160k 48.3 49.8 81M \ \ \
Focal-S ImageNet-1k 160k 48.0 50.0 61M \ \ \
QFormerh-S ImageNet-1k 160k 48.9 50.3 82M Coming soon Coming soon Coming soon
Swin-B ImageNet-1k 160k 48.1 49.7 121M \ \ \
DW-B ImageNet-1k 160k 48.7 50.3 125M \ \ \
Focal-B ImageNet-1k 160k 49.0 50.5 126M \ \ \
QFormerh-B ImageNet-1k 160k 49.5 50.6 123M Coming soon Coming soon Coming soon

Statement

This project is for research purpose only. For any other questions please contact qmzhangzz at hotmail.com.

The code base is borrowed from Swin.

Citing QFormer, VSA and ViTAE

@article{zhang2023vision,
  title={Vision Transformer with Quadrangle Attention},
  author={Zhang, Qiming and Zhang, Jing and Xu, Yufei and Tao, Dacheng},
  journal={arXiv preprint arXiv:2303.15105},
  year={2023}
}
@inproceedings{zhang2022vsa,
  title={VSA: learning varied-size window attention in vision transformers},
  author={Zhang, Qiming and Xu, Yufei and Zhang, Jing and Tao, Dacheng},
  booktitle={Computer Vision--ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23--27, 2022, Proceedings, Part XXV},
  pages={466--483},
  year={2022},
  organization={Springer}
}
@article{zhang2023vitaev2,
  title={Vitaev2: Vision transformer advanced by exploring inductive bias for image recognition and beyond},
  author={Zhang, Qiming and Xu, Yufei and Zhang, Jing and Tao, Dacheng},
  journal={International Journal of Computer Vision},
  pages={1--22},
  year={2023},
  publisher={Springer}
}
@article{xu2021vitae,
  title={Vitae: Vision transformer advanced by exploring intrinsic inductive bias},
  author={Xu, Yufei and Zhang, Qiming and Zhang, Jing and Tao, Dacheng},
  journal={Advances in Neural Information Processing Systems},
  volume={34},
  year={2021}
}

Our other Transformer works

ViTPose: Please see Baseline model ViTPose for human pose estimation;

VSA: Please see ViTAE-Transformer for Image Classification and Object Detection;

ViTAE & ViTAEv2: Please see ViTAE-Transformer for Image Classification, Object Detection, and Sementic Segmentation;

Matting: Please see ViTAE-Transformer for matting;

Remote Sensing: Please see ViTAE-Transformer for Remote Sensing; Advancing Plain Vision Transformer Towards Remote Sensing Foundation Model ;