Skip to content

Commit

Permalink
Automated Docs Update
Browse files Browse the repository at this point in the history
  • Loading branch information
github-actions committed Feb 4, 2022
1 parent 45ad6ff commit bbe910c
Show file tree
Hide file tree
Showing 6 changed files with 24 additions and 26 deletions.
Binary file modified docs/AIMSim.ops.doctree
Binary file not shown.
25 changes: 12 additions & 13 deletions docs/AIMSim.ops.html
Original file line number Diff line number Diff line change
Expand Up @@ -105,29 +105,28 @@ <h2>Submodules<a class="headerlink" href="#submodules" title="Permalink to this
<blockquote>
<div><dl>
<dt>clustering_method (str): Label for the specific algorithm used.</dt><dd><p>Supported methods are:
‘kmedoids’ for the K-Medoids algorithm [1]. This method is useful</p>
‘kmedoids’:</p>
<blockquote>
<div><p>when the molecular descriptors are continuous / Euclidean
<div><p>for the K-Medoids algorithm [1]. This method is useful
when the molecular descriptors are continuous / Euclidean
since it relies on the existence of a sensible medoid.</p>
</div></blockquote>
<dl class="simple">
<dt>‘complete_linkage’, ‘complete’ for complete linkage agglomerative</dt><dd><p>hierarchical clustering [2].</p>
<dt>‘complete_linkage’, ‘complete’: complete linkage agglomerative</dt><dd><p>hierarchical clustering [2].</p>
</dd>
<dt>‘average_linkage’, ‘average’ for average linkage agglomerative</dt><dd><p>hierarchical clustering [2].</p>
<dt>‘average_linkage’, ‘average’:</dt><dd><p>average linkage agglomerative hierarchical clustering [2].</p>
</dd>
<dt>‘single_linkage’, ‘single’ for single linkage agglomerative</dt><dd><p>hierarchical clustering [2].</p>
<dt>‘single_linkage’, ‘single’:</dt><dd><p>single linkage agglomerative hierarchical clustering [2].</p>
</dd>
<dt>‘ward’ for Ward’s algorithm [2]. This method is useful for</dt><dd><p>Euclidean descriptors.</p>
<dt>‘ward’:</dt><dd><p>for Ward’s algorithm [2]. This method is useful for
Euclidean descriptors.</p>
</dd>
</dl>
</dd>
</dl>
<p>n_clusters (int): Number of clusters.
<a href="#id1"><span class="problematic" id="id2">model_</span></a> (sklearn.cluster.AgglomerativeClustering or</p>
<blockquote>
<div><p>sklearn_extra.cluster.KMedoids): The clustering estimator.</p>
</div></blockquote>
<dl class="simple">
<dt>n_clusters (int):</dt><dd><p>Number of clusters.</p>
</dd>
<dt><a href="#id1"><span class="problematic" id="id2">model_</span></a> (sklearn.cluster.AgglomerativeClustering or sklearn_extra.cluster.KMedoids):</dt><dd><p>The clustering estimator.</p>
</dd>
<dt><a href="#id3"><span class="problematic" id="id4">labels_</span></a> (np.ndarray of shape (n_samples,)):</dt><dd><p>cluster labels of the training set samples.</p>
</dd>
</dl>
Expand Down
Binary file modified docs/_build/doctrees/AIMSim.ops.doctree
Binary file not shown.
Binary file modified docs/_build/doctrees/environment.pickle
Binary file not shown.
25 changes: 12 additions & 13 deletions docs/_build/html/AIMSim.ops.html
Original file line number Diff line number Diff line change
Expand Up @@ -105,29 +105,28 @@ <h2>Submodules<a class="headerlink" href="#submodules" title="Permalink to this
<blockquote>
<div><dl>
<dt>clustering_method (str): Label for the specific algorithm used.</dt><dd><p>Supported methods are:
‘kmedoids’ for the K-Medoids algorithm [1]. This method is useful</p>
‘kmedoids’:</p>
<blockquote>
<div><p>when the molecular descriptors are continuous / Euclidean
<div><p>for the K-Medoids algorithm [1]. This method is useful
when the molecular descriptors are continuous / Euclidean
since it relies on the existence of a sensible medoid.</p>
</div></blockquote>
<dl class="simple">
<dt>‘complete_linkage’, ‘complete’ for complete linkage agglomerative</dt><dd><p>hierarchical clustering [2].</p>
<dt>‘complete_linkage’, ‘complete’: complete linkage agglomerative</dt><dd><p>hierarchical clustering [2].</p>
</dd>
<dt>‘average_linkage’, ‘average’ for average linkage agglomerative</dt><dd><p>hierarchical clustering [2].</p>
<dt>‘average_linkage’, ‘average’:</dt><dd><p>average linkage agglomerative hierarchical clustering [2].</p>
</dd>
<dt>‘single_linkage’, ‘single’ for single linkage agglomerative</dt><dd><p>hierarchical clustering [2].</p>
<dt>‘single_linkage’, ‘single’:</dt><dd><p>single linkage agglomerative hierarchical clustering [2].</p>
</dd>
<dt>‘ward’ for Ward’s algorithm [2]. This method is useful for</dt><dd><p>Euclidean descriptors.</p>
<dt>‘ward’:</dt><dd><p>for Ward’s algorithm [2]. This method is useful for
Euclidean descriptors.</p>
</dd>
</dl>
</dd>
</dl>
<p>n_clusters (int): Number of clusters.
<a href="#id1"><span class="problematic" id="id2">model_</span></a> (sklearn.cluster.AgglomerativeClustering or</p>
<blockquote>
<div><p>sklearn_extra.cluster.KMedoids): The clustering estimator.</p>
</div></blockquote>
<dl class="simple">
<dt>n_clusters (int):</dt><dd><p>Number of clusters.</p>
</dd>
<dt><a href="#id1"><span class="problematic" id="id2">model_</span></a> (sklearn.cluster.AgglomerativeClustering or sklearn_extra.cluster.KMedoids):</dt><dd><p>The clustering estimator.</p>
</dd>
<dt><a href="#id3"><span class="problematic" id="id4">labels_</span></a> (np.ndarray of shape (n_samples,)):</dt><dd><p>cluster labels of the training set samples.</p>
</dd>
</dl>
Expand Down
Binary file modified docs/environment.pickle
Binary file not shown.

0 comments on commit bbe910c

Please sign in to comment.