Skip to content
This repository has been archived by the owner on Feb 23, 2024. It is now read-only.

Pure Java implementation of XGBoost predictor for online prediction tasks.

License

Notifications You must be signed in to change notification settings

Yelp/xgboost-predictor-java

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

99 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

xgboost-predictor-java

Pure Java implementation of XGBoost predictor for online prediction tasks. This fork has been modified by the Ad Delivery team at Yelp to improve online prediction speeds.

Check out our Yelp Engineering Blog post for more information about how we use this library in (part 1) and what modifications we made to the library to make it cache-friendly and greatly improve its performance and p50 latencies (part 2).

Using Predictor in Java

package biz.k11i.xgboost.demo;

import biz.k11i.xgboost.Predictor;
import biz.k11i.xgboost.util.FVec;

public class HowToUseXgboostPredictor {
    public static void main(String[] args) throws java.io.IOException {
        // If you want to use faster exp() calculation, uncomment the line below
        // ObjFunction.useFastMathExp(true);

        // Load model and create Predictor
        Predictor predictor = new Predictor(
                new java.io.FileInputStream("/path/to/xgboost-model-file"));

        // Create feature vector from dense representation by array
        double[] denseArray = {0, 0, 32, 0, 0, 16, -8, 0, 0, 0};
        FVec fVecDense = FVec.Transformer.fromArray(
                denseArray,
                true /* treat zero element as N/A */);

        // Create feature vector from sparse representation by map
        FVec fVecSparse = FVec.Transformer.fromMap(
                new java.util.HashMap<Integer, Double>() {{
                    put(2, 32.);
                    put(5, 16.);
                    put(6, -8.);
                }});

        // Predict probability or classification
        double[] prediction = predictor.predict(fVecDense);

        // prediction[0] has
        //    - probability ("binary:logistic")
        //    - class label ("multi:softmax")

        // Predict leaf index of each tree
        int[] leafIndexes = predictor.predictLeaf(fVecDense);

        // leafIndexes[i] has a leaf index of i-th tree
    }
}

Benchmark

Our improvements to cache efficiency and tree structure have resulted in more than doubling the online performance for our use case compared to the the original project.

Check out the Yelp Engineering Blog post with the latency benchmarks with the Yelp improvements:

Latency benchmarks

Supported models, objective functions and API

  • Models
    • "gblinear"
    • "gbtree"
  • Objective functions
    • "binary:logistic"
    • "binary:logitraw"
    • "multi:softmax"
    • "multi:softprob"
    • "reg:linear"
  • API
    • Predicts probability or classification
      • Predictor#predict(FVec)
    • Outputs margin
      • Predictor#predict(FVec, true /* output margin */)
    • Predicts leaf index
      • Predictor#predictLeaf(FVec)

About

Pure Java implementation of XGBoost predictor for online prediction tasks.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Java 99.4%
  • Makefile 0.6%