-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
593 lines (537 loc) · 23.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
import os
import numpy as np
import torch
import os
import re
import json
import argparse
import random
from transformers import AutoTokenizer, DataCollatorForSeq2Seq, Seq2SeqTrainingArguments, Seq2SeqTrainer
from model import T5ForGoTGeneration
from utils_data import img_shape,load_data_std_aqua, load_data_img, ScienceQADatasetImg_GoT,AQuADatasetGoT
from utils_prompt import *
from utils_evaluate import get_scores,get_scores_aqua
from rich.table import Column, Table
from rich import box
from rich.console import Console
console = Console(record=True)
import nltk
import evaluate
from accelerate.utils import DistributedType
deepspeed_config = {
"bf16": {
"enabled": "auto"
},
"optimizer": {
"type": "AdamW",
"params": {
"lr": "auto",
"betas": "auto",
"eps": "auto",
"weight_decay": "auto"
}
},
"zero_optimization": {
"stage": 3,
"overlap_comm": True,
"contiguous_gradients": True,
"sub_group_size": 1e9,
"reduce_bucket_size": "auto",
"stage3_prefetch_bucket_size": "auto",
"stage3_param_persistence_threshold": "auto",
"stage3_max_live_parameters": 1e9,
"stage3_max_reuse_distance": 1e9,
"stage3_gather_16bit_weights_on_model_save": True
},
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"steps_per_print": 2000,
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"wall_clock_breakdown": False
}
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--data_root', type=str, default='data')
parser.add_argument('--dataset', type=str, default='ScienceQA')
parser.add_argument('--got_root', type=str, default='GoT_dataset/')
parser.add_argument('--output_dir', type=str, default='experiments')
parser.add_argument('--model', type=str, default='declare-lab/flan-alpaca-large')
parser.add_argument('--options', type=list, default=["A", "B", "C", "D", "E"])
parser.add_argument('--epoch', type=int, default=50)
parser.add_argument('--lr', type=float, default=5e-5)
parser.add_argument('--bs', type=int, default=2)
parser.add_argument('--input_len', type=int, default=512)
parser.add_argument('--output_len', type=int, default=64)
parser.add_argument('--eval_bs', type=int, default=4)
parser.add_argument('--eval_acc', type=int, default=None, help='evaluate accumulation step')
parser.add_argument('--train_split', type=str, default='train', choices=['train', 'trainval', 'minitrain'])
parser.add_argument('--val_split', type=str, default='val', choices=['test', 'val', 'minival'])
parser.add_argument('--test_split', type=str, default='test', choices=['test', 'minitest'])
parser.add_argument('--use_generate', action='store_true', help='only for baseline to improve inference speed')
parser.add_argument('--final_eval', action='store_true', help='only evaluate the model at the final epoch')
parser.add_argument('--user_msg', type=str, default="baseline", help='experiment type in the save_dir')
parser.add_argument('--img_type', type=str, default=None, choices=['detr', 'clip', 'resnet','vit'], help='type of image features')
parser.add_argument('--eval_le', type=str, default=None, help='generated rationale for the dev set')
parser.add_argument('--test_le', type=str, default=None, help='generated rationale for the test set')
parser.add_argument('--evaluate_dir', type=str, default=None, help='the directory of model for evaluation')
parser.add_argument('--caption_file', type=str, default= None)
parser.add_argument('--use_caption', action='store_true', help='use image captions or not')
parser.add_argument('--prompt_format', type=str, default='QCM-A', help='prompt format template',
choices=['QCM-A', 'QCM-E', 'QCM-LE', 'QCMG-A', 'QCM-LEA', 'QCM-ALE','QC-E','QCG-A'])
parser.add_argument('--seed', type=int, default=42, help='random seed')
parser.add_argument('--resume_from_checkpoint', type=str, default=None, help='resume from checkpoint')
parser.add_argument('--eval_strategy', type=str, default="steps", help='evaluation strategy', choices=['steps', 'epoch'])
parser.add_argument('--weight_decay', type=float, default=0.05, help='weight decay')
parser.add_argument('--bf16', action='store_true', help='use bf16 dtype')
args = parser.parse_args()
return args
def T5Trainer(
dataframe, args,
):
torch.manual_seed(args.seed) # pytorch random seed
np.random.seed(args.seed) # numpy random seed
torch.backends.cudnn.deterministic = True
if args.evaluate_dir is not None:
args.model = args.evaluate_dir
tokenizer = AutoTokenizer.from_pretrained(args.model)
tokenizer.add_special_tokens({'additional_special_tokens': ['<s>']})
vocab = tokenizer.get_vocab()
s_token_id = vocab["<s>"]
console.log(f"""[Model]: Loading {args.model}...\n""")
console.log(f"[Data]: Reading data...\n")
if args.dataset == "ScienceQA":
problems = dataframe['problems']
qids = dataframe['qids']
train_qids = qids['train']
test_qids = qids['test']
val_qids = qids['val']
elif args.dataset == "AQuA":
train_problems = dataframe['train']
dev_problems = dataframe['dev']
test_problems = dataframe['test']
if args.evaluate_dir is not None:
save_dir = args.evaluate_dir
else:
model_name = args.model.replace("/","-")
gpu_count = torch.cuda.device_count()
save_dir = f"{args.output_dir}/{args.user_msg}_{model_name}_{args.img_type}_{args.prompt_format}_lr{args.lr}_bs{args.bs * gpu_count}_op{args.output_len}_ep{args.epoch}_useG{args.use_generate}"
if not os.path.exists(save_dir):
os.mkdir(save_dir)
print(save_dir)
if args.img_type is not None:
##make sure aqua dataset does not have img_type
if args.dataset == "AQuA":
raise ValueError("AQuA dataset should not have img_type")
patch_size = img_shape[args.img_type]
model = T5ForGoTGeneration.from_pretrained(args.model,s_token_id=s_token_id, patch_size=patch_size)
model.resize_token_embeddings(len(tokenizer))
name_maps = dataframe['name_maps']
image_features = dataframe['image_features']
train_set = ScienceQADatasetImg_GoT(
problems,
train_qids,
name_maps,
tokenizer,
args.input_len,
args.output_len,
args,
image_features,
)
eval_set = ScienceQADatasetImg_GoT(
problems,
val_qids,
name_maps,
tokenizer,
args.input_len,
args.output_len,
args,
image_features,
args.eval_le,
)
test_set = ScienceQADatasetImg_GoT(
problems,
test_qids,
name_maps,
tokenizer,
args.input_len,
args.output_len,
args,
image_features,
args.test_le,
)
else:
##make sure scienceqa dataset has img_type
if args.dataset == "ScienceQA":
raise ValueError("ScienceQA dataset should have img_type")
model = T5ForGoTGeneration.from_pretrained(args.model,s_token_id=s_token_id)
model.resize_token_embeddings(len(tokenizer))
train_set = AQuADatasetGoT(
train_problems,
"train",
tokenizer,
args.input_len,
args.output_len,
args,
)
eval_set = AQuADatasetGoT(
dev_problems,
"dev",
tokenizer,
args.input_len,
args.output_len,
args,
args.eval_le,
)
test_set = AQuADatasetGoT(
test_problems,
"test",
tokenizer,
args.input_len,
args.output_len,
args,
args.test_le,
)
datacollator = DataCollatorForSeq2Seq(tokenizer)
print("model parameters: ", model.num_parameters())
def extract_ans(ans):
#extract the answer for scienceqa dataset
if "The answer is" in ans:
pattern = re.compile(r'The answer is \(([A-Z])\)')
res = pattern.findall(ans)
if len(res) == 1:
answer = res[0] # 'A', 'B', ...
else:
answer = "FAILED"
return answer
#extract the answer for aqua dataset
else:
match = re.search(r'[a-zA-Z]', ans)
if match:
first_letter = match.group().upper()
if first_letter in 'ABCDE':
answer = first_letter
else:
answer = "FAILED"
else:
answer = "FAILED"
return answer
# accuracy for answer inference
def compute_metrics_acc(eval_preds):
if args.use_generate:
preds, targets = eval_preds
if isinstance(preds, tuple):
preds = preds[0]
else:
preds = eval_preds.predictions[0]
targets = eval_preds.label_ids
#preds = preds.argmax(axis=2)
pred_result= np.where(preds != -100, preds, tokenizer.pad_token_id)
preds = tokenizer.batch_decode(pred_result, skip_special_tokens=True, clean_up_tokenization_spaces=True)
targets = tokenizer.batch_decode(targets, skip_special_tokens=True, clean_up_tokenization_spaces=True)
correct = 0
assert len(preds) == len(targets)
for idx, pred in enumerate(preds):
reference = targets[idx]
reference = extract_ans(reference)
extract_pred = extract_ans(pred)
best_option = extract_pred
if reference == best_option and reference!="FAILED":
correct +=1
return {'accuracy': 1.0*correct/len(targets)}
# rougel for rationale generation
metric = evaluate.load("rouge")
def postprocess_text(preds, labels):
processed_preds = []
for pred in preds:
pred = pred.strip()
try:
# use nltk to split the text into sentences
processed_pred = "\n".join(nltk.sent_tokenize(pred))
except IndexError:
# if the text is too long, it may cause an IndexError
print(f"IndexError occurred with text: {pred}")
processed_pred = pred
processed_preds.append(processed_pred)
processed_labels = []
for label in labels:
label = label.strip()
try:
# use nltk to split the text into sentences
processed_label = "\n".join(nltk.sent_tokenize(label))
except IndexError:
print(f"IndexError occurred with text: {label}")
processed_label = label
processed_labels.append(processed_label)
return processed_preds, processed_labels
def compute_metrics_rougel(eval_preds):
if args.use_generate:
preds, targets = eval_preds
if isinstance(preds, tuple):
preds = preds[0]
else:
preds = eval_preds.predictions[0]
targets = eval_preds.label_ids
pred_result= np.where(preds != -100, preds, tokenizer.pad_token_id)
preds = tokenizer.batch_decode(pred_result, skip_special_tokens=True, clean_up_tokenization_spaces=True)
targets = tokenizer.batch_decode(targets, skip_special_tokens=True, clean_up_tokenization_spaces=True)
decoded_preds, decoded_labels = postprocess_text(preds, targets)
result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
result = {k: round(v * 100, 4) for k, v in result.items()}
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
result["gen_len"] = np.mean(prediction_lens)
return result
# only use the last model for evaluation to save time
if args.final_eval:
training_args = Seq2SeqTrainingArguments(
save_dir,
do_train=True if args.evaluate_dir is None else False,
do_eval=False,
evaluation_strategy="no",
logging_strategy="steps",
logging_steps=20,
save_strategy="epoch",
save_total_limit = 2,
learning_rate= args.lr,
eval_accumulation_steps=args.eval_acc,
per_device_train_batch_size=args.bs,
per_device_eval_batch_size=args.eval_bs,
weight_decay=args.weight_decay,
num_train_epochs=args.epoch,
predict_with_generate=args.use_generate,
generation_max_length=args.output_len,
#resume_from_checkpoint=args.resume_from_checkpoint,
report_to="none",
deepspeed=deepspeed_config,
bf16=args.bf16
)
training_args.distributed_state.distributed_type = DistributedType.DEEPSPEED
# evaluate at each epoch
else:
if args.evaluate_dir is None:
training_args = Seq2SeqTrainingArguments(
save_dir,
do_train=True if args.evaluate_dir is None else False,
do_eval=True,
evaluation_strategy="steps",
logging_strategy="steps",
logging_steps=10,
save_strategy="steps",
eval_steps=1000,
save_steps=1000,
save_total_limit = 2,
learning_rate= args.lr,
eval_accumulation_steps=args.eval_acc,
per_device_train_batch_size=args.bs,
per_device_eval_batch_size=args.eval_bs,
weight_decay=args.weight_decay,
num_train_epochs=args.epoch,
metric_for_best_model="accuracy" if args.prompt_format in ["QCMG-A","QCM-A","QCG-A"] else "rougeL",
predict_with_generate=args.use_generate,
generation_max_length=args.output_len,
load_best_model_at_end=True,
report_to="none",
deepspeed=deepspeed_config,
bf16=args.bf16
)
training_args.distributed_state.distributed_type = DistributedType.DEEPSPEED
else:
##do evaluation only
training_args = Seq2SeqTrainingArguments(
save_dir,
do_train=True if args.evaluate_dir is None else False,
do_eval=True,
evaluation_strategy="steps",
logging_strategy="steps",
logging_steps=20,
save_strategy="steps",
eval_steps=500,
save_steps=500,
save_total_limit = 2,
learning_rate= args.lr,
eval_accumulation_steps=args.eval_acc,
per_device_train_batch_size=args.bs,
per_device_eval_batch_size=args.eval_bs,
weight_decay=args.weight_decay,
num_train_epochs=args.epoch,
metric_for_best_model="accuracy" if args.prompt_format in ["QCMG-A","QCM-A","QCG-A"] else "rougeL",
predict_with_generate=args.use_generate,
generation_max_length=args.output_len,
load_best_model_at_end=True,
report_to="none",
)
#convert model to bf16 dtype
# model = model.half()
def preprocess_logits_for_metrics(logits, labels):
"""
Original Trainer may have a memory leak.
This is a workaround to avoid storing too many tensors that are not needed.
"""
pred_ids = torch.argmax(logits[0], dim=-1)
return pred_ids, labels
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
train_dataset=train_set,
eval_dataset=eval_set,
data_collator=datacollator,
tokenizer=tokenizer,
compute_metrics = compute_metrics_acc if args.prompt_format in ["QCMG-A","QCM-A","QCG-A"] else compute_metrics_rougel,
preprocess_logits_for_metrics=preprocess_logits_for_metrics if not args.use_generate else None
)
if args.evaluate_dir is None:
trainer.train(resume_from_checkpoint=args.resume_from_checkpoint)
trainer.save_model(save_dir)
metrics = trainer.evaluate(eval_dataset = test_set, max_length=args.output_len)
trainer.log_metrics("test", metrics)
trainer.save_metrics("test", metrics)
predict_results = trainer.predict(test_dataset=test_set, max_length=args.output_len)
if trainer.is_world_process_zero() or args.evaluate_dir is not None:
if args.use_generate:
preds, targets = predict_results.predictions, predict_results.label_ids
else:
preds = predict_results.predictions[0]
targets = predict_results.label_ids
preds= np.where(preds != -100, preds, tokenizer.pad_token_id)
preds = tokenizer.batch_decode(
preds, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
targets = tokenizer.batch_decode(
targets, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
if args.dataset == "ScienceQA":
results_ans = {}
results_rationale = {}
results_reference = {}
num_fail = 0
extract_pred_list=[]
for idx, qid in enumerate(test_qids):
pred = preds[int(idx)]
ref = targets[int(idx)]
extract_pred = extract_ans(pred)
if extract_pred != "FAILED":
if extract_pred in args.options:
extract_pred = args.options.index(extract_pred)
else:
extract_pred = random.choice(range(0,len(args.options)))
else:
num_fail += 1
extract_pred = random.choice(range(len(args.options))) # random choose one option
results_ans[str(qid)] = extract_pred
extract_pred_list.append(extract_pred)
results_rationale[str(qid)] = pred
results_reference[str(qid)] = ref
scores = get_scores(results_ans, results_rationale, results_reference, os.path.join(args.data_root, "ScienceQA/problems.json"))
preds = [pred.strip() for pred in preds]
output_data = {
"num_fail": num_fail,
"scores": scores,
"preds": preds,
"extract_pred":extract_pred_list,
"labels": targets}
if args.use_generate:
output_prediction_file = os.path.join(save_dir,"predictions_ans_test.json")
else: #with teach forcing
#make dir
if not os.path.exists(os.path.join(save_dir,"tf_pred")):
os.mkdir(os.path.join(save_dir,"tf_pred"))
output_prediction_file = os.path.join(save_dir,"tf_pred","predictions_ans_test.json")
with open(output_prediction_file, "w") as writer:
writer.write(json.dumps(output_data, indent=4))
elif args.dataset == "AQuA":
results_ans = {}
results_rationale = {}
results_reference = {}
num_fail = 0
extract_pred_list=[]
for idx in range(len(preds)):
pred = preds[int(idx)]
ref = targets[int(idx)]
extract_pred = extract_ans(pred)
if extract_pred != "FAILED":
if extract_pred in args.options:
extract_pred = args.options.index(extract_pred)
else:
extract_pred = random.choice(range(0,len(args.options)))
else:
num_fail += 1
extract_pred = random.choice(range(len(args.options)))
results_ans[idx] = extract_pred
extract_pred_list.append(extract_pred)
results_rationale[idx] = pred
results_reference[idx] = ref
scores = get_scores_aqua(results_ans, results_rationale, results_reference, os.path.join(args.data_root, "AQuA/test.json"))
preds = [pred.strip() for pred in preds]
output_data = {
"num_fail": num_fail,
"scores": scores,
"preds": preds,
"extract_pred":extract_pred_list,
"labels": targets}
if args.use_generate:
output_prediction_file = os.path.join(save_dir,"predictions_ans_test.json")
else: #with teacher forcing
#make dir
if not os.path.exists(os.path.join(save_dir,"tf_pred")):
os.mkdir(os.path.join(save_dir,"tf_pred"))
output_prediction_file = os.path.join(save_dir,"tf_pred","predictions_ans_test.json")
with open(output_prediction_file, "w") as writer:
writer.write(json.dumps(output_data, indent=4))
# generate the rationale for the eval set
if args.prompt_format in ["QCM-LE", "QCM-E","QC-E"]:
torch.cuda.empty_cache()
#del predict_results, preds, targets
predict_results = trainer.predict(test_dataset=eval_set, max_length=args.output_len)
if trainer.is_world_process_zero():
if args.use_generate:
preds, targets = predict_results.predictions, predict_results.label_ids
else:
preds = predict_results.predictions[0]
targets = predict_results.label_ids
#preds = preds.argmax(axis=2)
preds= np.where(preds != -100, preds, tokenizer.pad_token_id)
preds = tokenizer.batch_decode(
preds, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
targets = tokenizer.batch_decode(
targets, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
preds = [pred.strip() for pred in preds]
output_data = {"preds": preds,
"labels": targets}
if args.use_generate:
output_prediction_file = os.path.join(save_dir,"predictions_ans_eval.json")
else: #with teacher forcing
#make dir
if not os.path.exists(os.path.join(save_dir,"tf_pred")):
os.mkdir(os.path.join(save_dir,"tf_pred"))
output_prediction_file = os.path.join(save_dir,"tf_pred","predictions_ans_eval.json")
with open(output_prediction_file, "w") as writer:
writer.write(json.dumps(output_data, indent=4))
if __name__ == '__main__':
# training logger to log training progress
training_logger = Table(
Column("Epoch", justify="center"),
Column("Steps", justify="center"),
Column("Loss", justify="center"),
title="Training Status",
pad_edge=False,
box=box.ASCII,
)
args = parse_args()
print("args",args)
print('====Input Arguments====')
print(json.dumps(vars(args), indent=2, sort_keys=False))
random.seed(args.seed)
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
if args.img_type is not None: #scienceqa dataset
problems, qids, name_maps, image_features = load_data_img(args)
dataframe = {'problems':problems, 'qids':qids, 'name_maps': name_maps, 'image_features': image_features}
else: #aqua dataset
problems_train, problems_dev, problems_test = load_data_std_aqua(args)
dataframe = {'train':problems_train,"dev":problems_dev,"test":problems_test}
T5Trainer(
dataframe=dataframe,
args = args
)