-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils_evaluate.py
157 lines (128 loc) · 5.02 KB
/
utils_evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
'''
Adapted from https://github.com/lupantech/ScienceQA and https://github.com/amazon-science/mm-cot
'''
import os
import json
import argparse
import warnings
import pandas as pd
from sentence_transformers import SentenceTransformer
from evaluations import caculate_bleu, caculate_rouge, caculate_similariry
warnings.filterwarnings('ignore')
def get_acc_with_contion(res_pd, key, values):
if isinstance(values, list):
total_pd = res_pd[res_pd[key].isin(values)]
else:
total_pd = res_pd[res_pd[key] == values]
correct_pd = total_pd[total_pd['true_false'] == True]
acc = "{:.2f}".format(len(correct_pd) / len(total_pd) * 100)
return acc
def get_scores(result_data, rationale_data, results_reference, data_file):
# read result file
results = result_data
num = len(results)
assert num == 4241
#print("number of questions:", num)
# read data file
sqa_data = json.load(open(data_file))
# construct pandas data
sqa_pd = pd.DataFrame(sqa_data).T
res_pd = sqa_pd[sqa_pd['split'] == 'test'] # test set
# update data
for index, row in res_pd.iterrows():
res_pd.loc[index, 'no_context'] = True if (not row['hint'] and not row['image']) else False
res_pd.loc[index, 'has_text'] = True if row['hint'] else False
res_pd.loc[index, 'has_image'] = True if row['image'] else False
res_pd.loc[index, 'has_text_image'] = True if (row['hint'] and row['image']) else False
label = row['answer']
pred = int(results[index])
res_pd.loc[index, 'pred'] = pred
res_pd.loc[index, 'true_false'] = (label == pred)
# accuracy scores
acc_average = len(res_pd[res_pd['true_false'] == True]) / num * 100
#assert result_file.split('_')[-1] == "{:.3f}.json".format(acc_average)
# rationale quality
## BLEU
bleu1 = caculate_bleu(rationale_data, results_reference, gram=1)
bleu4 = caculate_bleu(rationale_data, results_reference, gram=4)
## Rouge-L
rouge = caculate_rouge(rationale_data, results_reference)
## Similarity
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2').cuda()
similariry = caculate_similariry(rationale_data, results_reference, model)
scores = {
"answer":{
'acc_natural':
get_acc_with_contion(res_pd, 'subject', 'natural science'),
'acc_social':
get_acc_with_contion(res_pd, 'subject', 'social science'),
'acc_language':
get_acc_with_contion(res_pd, 'subject', 'language science'),
'acc_has_text':
get_acc_with_contion(res_pd, 'has_text', True),
'acc_has_image':
get_acc_with_contion(res_pd, 'has_image', True),
'acc_no_context':
get_acc_with_contion(res_pd, 'no_context', True),
'acc_grade_1_6':
get_acc_with_contion(res_pd, 'grade', ['grade1', 'grade2', 'grade3', 'grade4', 'grade5', 'grade6']),
'acc_grade_7_12':
get_acc_with_contion(res_pd, 'grade', ['grade7', 'grade8', 'grade9', 'grade10', 'grade11', 'grade12']),
'acc_average':
"{:.2f}".format(acc_average),
},
"rationale":{
'bleu1': bleu1 * 100,
'bleu4': bleu4 * 100,
'rouge': rouge * 100,
'similariry': similariry * 100,
}
}
return scores
def get_scores_aqua(result_data, rationale_data, results_reference,data_file):
# read result file
options=["A", "B", "C", "D", "E"]
results = result_data
def load_data(json_path):
problems=[]
with open(json_path, 'r', encoding='utf-8') as file:
for line in file:
data = json.loads(line)
problems.append(data)
return problems
# read data file
aqua_data = load_data(data_file)
right=0
for i in range(len(results)):
if results[i]==options.index(aqua_data[i]["correct"]):
right+=1
acc = right/len(results)
# rationale quality
## BLEU
bleu1 = caculate_bleu(rationale_data, results_reference, gram=1)
bleu4 = caculate_bleu(rationale_data, results_reference, gram=4)
## Rouge-L
rouge = caculate_rouge(rationale_data, results_reference)
## Similarity
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2').cuda()
similariry = caculate_similariry(rationale_data, results_reference, model)
scores = {
"answer":{
'acc':
"{:.4f}".format(acc),
},
"rationale":{
'bleu1': bleu1 * 100,
'bleu4': bleu4 * 100,
'rouge': rouge * 100,
'similariry': similariry * 100,
}
}
return scores
def print_scores(scores):
latex_output = ""
for key, score in scores.items():
print(f"{key[4:]}: \t{score}")
latex_output += f"& {score} "
latex_output += "\\\\"
print(latex_output)