Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add I2C clock stretching. #32

Merged
merged 1 commit into from
Mar 11, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 9 additions & 4 deletions adafruit_bitbangio.py
Original file line number Diff line number Diff line change
Expand Up @@ -190,13 +190,17 @@ def _sda_low(self) -> None:
self._sda.switch_to_output(value=False)

def _scl_release(self) -> None:
"""Release and let the pullups lift"""
# Use self._timeout to add clock stretching
"""Release and wait for the pullups to lift."""
self._scl.switch_to_input()
# Wait at most self._timeout seconds for any clock stretching.
end = monotonic() + self._timeout
while not self._scl.value and end > monotonic():
pass
if not self._scl.value:
raise RuntimeError("Bus timed out.")

def _sda_release(self) -> None:
"""Release and let the pullups lift"""
# Use self._timeout to add clock stretching
self._sda.switch_to_input()

def _start(self) -> None:
Expand Down Expand Up @@ -288,7 +292,8 @@ def _write(self, address: int, buffer: ReadableBuffer, transmit_stop: bool) -> N
# raise RuntimeError("Device not responding at 0x{:02X}".format(address))
raise RuntimeError(f"Device not responding at 0x{address:02X}")
for byte in buffer:
self._write_byte(byte)
if not self._write_byte(byte):
raise RuntimeError(f"Device not responding at 0x{address:02X}")
if transmit_stop:
self._stop()

Expand Down
209 changes: 209 additions & 0 deletions tests/simulated_i2c.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,209 @@
# SPDX-FileCopyrightText: KB Sriram
# SPDX-License-Identifier: MIT
"""Implementation of testable I2C devices."""

from typing import Any, Callable, Optional, Union
import dataclasses
import enum
import signal
import types
from typing_extensions import TypeAlias
import simulator as sim

_SignalHandler: TypeAlias = Union[
Callable[[int, Optional[types.FrameType]], Any], int, None
]


@enum.unique
class State(enum.Enum):
IDLE = "idle"
ADDRESS = "address"
ACK = "ack"
ACK_DONE = "ack_done"
WAIT_ACK = "wait_ack"
READ = "read"
WRITE = "write"


@dataclasses.dataclass(frozen=True)
class I2CBus:
scl: sim.Net
sda: sim.Net


def _switch_to_output(pin: sim.FakePin, value: bool) -> None:
pin.mode = sim.Mode.OUT
pin.value(1 if value else 0)


def _switch_to_input(pin: sim.FakePin) -> None:
pin.init(mode=sim.Mode.IN)
pin.level = sim.Level.HIGH


class Constant:
"""I2C device that sinks all data and can send a constant."""

# pylint:disable=too-many-instance-attributes
# pylint:disable=too-many-arguments
def __init__(
self,
name: str,
address: int,
bus: I2CBus,
ack_data: bool = True,
clock_stretch_sec: int = 0,
data_to_send: int = 0,
) -> None:
self._address = address
self._scl = sim.FakePin(f"{name}_scl_pin", bus.scl)
self._sda = sim.FakePin(f"{name}_sda_pin", bus.sda)
self._last_scl_level = bus.scl.level
self._ack_data = ack_data
self._clock_stretch_sec = clock_stretch_sec
self._prev_signal: _SignalHandler = None
self._state = State.IDLE
self._bit_count = 0
self._received = 0
self._all_received = bytearray()
self._send_data = data_to_send
self._sent_bit_count = 0
self._in_write = 0

bus.scl.on_level_change(self._on_level_change)
bus.sda.on_level_change(self._on_level_change)

def _move_state(self, nstate: State) -> None:
self._state = nstate

def _on_start(self) -> None:
# This resets our state machine unconditionally and
# starts waiting for an address.
self._bit_count = 0
self._received = 0
self._move_state(State.ADDRESS)

def _on_stop(self) -> None:
# Reset and start idling.
self._reset()

def _reset(self) -> None:
self._bit_count = 0
self._received = 0
self._move_state(State.IDLE)

def _clock_release(
self, ignored_signum: int, ignored_frame: Optional[types.FrameType] = None
) -> None:
# First release the scl line
_switch_to_input(self._scl)
# Remove alarms
signal.alarm(0)
# Restore any existing signal.
if self._prev_signal:
signal.signal(signal.SIGALRM, self._prev_signal)
self._prev_signal = None

def _maybe_clock_stretch(self) -> None:
if not self._clock_stretch_sec:
return
if self._state == State.IDLE:
return
# pull the clock line low
_switch_to_output(self._scl, value=False)
# Set an alarm to release the line after some time.
self._prev_signal = signal.signal(signal.SIGALRM, self._clock_release)
signal.alarm(self._clock_stretch_sec)

def _on_byte_read(self) -> None:
self._all_received.append(self._received)

def _on_clock_fall(self) -> None:
self._maybe_clock_stretch()

# Return early unless we need to send data.
if self._state not in (State.ACK, State.ACK_DONE, State.WRITE):
return

if self._state == State.ACK:
# pull down the data line to start the ack. We want to hold
# it down until the next clock falling edge.
if self._ack_data or not self._all_received:
_switch_to_output(self._sda, value=False)
self._move_state(State.ACK_DONE)
return
if self._state == State.ACK_DONE:
# The data line has been held between one pair of falling edges - we can
# let go now if we need to start reading.
if self._in_write:
# Note: this will also write out the first bit later in this method.
self._move_state(State.WRITE)
else:
_switch_to_input(self._sda)
self._move_state(State.READ)

if self._state == State.WRITE:
if self._sent_bit_count == 8:
_switch_to_input(self._sda)
self._sent_bit_count = 0
self._move_state(State.WAIT_ACK)
else:
bit_value = (self._send_data >> (7 - self._sent_bit_count)) & 0x1
_switch_to_output(self._sda, value=bit_value == 1)
self._sent_bit_count += 1

def _on_clock_rise(self) -> None:
if self._state not in (State.ADDRESS, State.READ, State.WAIT_ACK):
return
bit_value = 1 if self._sda.net.level == sim.Level.HIGH else 0
if self._state == State.WAIT_ACK:
if bit_value:
# NACK, just reset.
self._move_state(State.IDLE)
else:
# ACK, continue writing.
self._move_state(State.ACK_DONE)
return
self._received = (self._received << 1) | bit_value
self._bit_count += 1
if self._bit_count < 8:
return

# We've read 8 bits of either address or data sent to us.
if self._state == State.ADDRESS and self._address != (self._received >> 1):
# This message isn't for us, reset and start idling.
self._reset()
return
# This message is for us, ack it.
if self._state == State.ADDRESS:
self._in_write = self._received & 0x1
elif self._state == State.READ:
self._on_byte_read()
self._bit_count = 0
self._received = 0
self._move_state(State.ACK)

def _on_level_change(self, net: sim.Net) -> None:
# Handle start/stop events directly.
if net == self._sda.net and self._scl.net.level == sim.Level.HIGH:
if net.level == sim.Level.LOW:
# sda hi->low with scl high
self._on_start()
else:
# sda low->hi with scl high
self._on_stop()
return

# Everything else can be handled as state changes that occur
# either on the clock rising or falling edge.
if net == self._scl.net:
if net.level == sim.Level.HIGH:
# scl low->high
self._on_clock_rise()
else:
# scl high->low
self._on_clock_fall()

def all_received_data(self) -> bytearray:
return self._all_received
Loading
Loading