Skip to content

Commit

Permalink
Integer Ord proof
Browse files Browse the repository at this point in the history
  • Loading branch information
odderwiser committed May 2, 2024
1 parent 7d58571 commit bb5c94f
Show file tree
Hide file tree
Showing 5 changed files with 129 additions and 18 deletions.
9 changes: 7 additions & 2 deletions lib/Haskell/Law/Bool.agda
Original file line number Diff line number Diff line change
Expand Up @@ -4,11 +4,11 @@ open import Haskell.Prim
open import Haskell.Prim.Bool

open import Haskell.Law.Equality

open import Haskell.Law.Def
--------------------------------------------------
-- &&

&&-sym : (a b : Bool) (a && b) ≡ (b && a)
&&-sym : F-sym _&&_
&&-sym False False = refl
&&-sym False True = refl
&&-sym True False = refl
Expand Down Expand Up @@ -52,6 +52,11 @@ open import Haskell.Law.Equality
||-rightTrue False .True refl = refl
||-rightTrue True .True refl = refl

||-sym : F-sym _||_
||-sym False False = refl
||-sym False True = refl
||-sym True False = refl
||-sym True True = refl
--------------------------------------------------
-- not

Expand Down
3 changes: 3 additions & 0 deletions lib/Haskell/Law/Def.agda
Original file line number Diff line number Diff line change
Expand Up @@ -4,3 +4,6 @@ open import Haskell.Prim

Injective : (a b) Set _
Injective f = {x y} f x ≡ f y x ≡ y

F-sym : (a a b) Set _
F-sym f = x y f x y ≡ f y x
1 change: 1 addition & 0 deletions lib/Haskell/Law/Ord.agda
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@ module Haskell.Law.Ord where

open import Haskell.Law.Ord.Def public
open import Haskell.Law.Ord.Bool public
open import Haskell.Law.Ord.Integer public
open import Haskell.Law.Ord.Maybe public
open import Haskell.Law.Ord.Nat public
open import Haskell.Law.Ord.Ordering public
32 changes: 16 additions & 16 deletions lib/Haskell/Law/Ord/Def.agda
Original file line number Diff line number Diff line change
Expand Up @@ -84,20 +84,13 @@ lte2LtEq : ⦃ iOrdA : Ord a ⦄ → ⦃ IsLawfulOrd a ⦄
(x y : a) (x <= y) ≡ (x < y || x == y)
lte2LtEq x y
rewrite lt2LteNeq x y
| compareEq x y
with (x <= y) in h₁ | (compare x y) in h₂
... | False | LT = refl
... | False | EQ = magic $ exFalso (reflexivity x) $ begin
(x <= x) ≡⟨ (cong (x <=_) (equality x y (begin
(x == y) ≡⟨ compareEq x y ⟩
(compare x y == EQ) ≡⟨ equality' (compare x y) EQ h₂ ⟩
True ∎ ) ) ) ⟩
(x <= y) ≡⟨ h₁ ⟩
False ∎
... | False | GT = refl
... | True | LT = refl
... | True | EQ = refl
... | True | GT = refl
with (x <= y) in h₁ | (x == y) in h₂
...| True | True = refl
...| True | False = refl
...| False | True = magic $ exFalso
(reflexivity x)
(trans (cong₂ _<=_ refl (equality x y h₂)) h₁)
...| False | False = refl

gte2GtEq : ⦃ iOrdA : Ord a ⦄ ⦃ IsLawfulOrd a ⦄
(x y : a) (x >= y) ≡ (x > y || x == y)
Expand Down Expand Up @@ -172,12 +165,19 @@ gt2gte x y h
| lte2gte y x
= refl

reverseLte : ⦃ iOrdA : Ord a ⦄ ⦃ IsLawfulOrd a ⦄
( a b c d : a )
((a <= b) && (c <= d)) ≡ (( d >= c) && (b >= a))
reverseLte a b c d
rewrite &&-sym (a <= b) (c <= d)
| sym $ lte2gte c d
| sym $ lte2gte a b
= refl

--------------------------------------------------
-- Postulated instances

postulate instance
iLawfulOrdInteger : IsLawfulOrd Integer

iLawfulOrdInt : IsLawfulOrd Int

iLawfulOrdWord : IsLawfulOrd Word
Expand Down
102 changes: 102 additions & 0 deletions lib/Haskell/Law/Ord/Integer.agda
Original file line number Diff line number Diff line change
@@ -0,0 +1,102 @@
module Haskell.Law.Ord.Integer where

open import Haskell.Prim
open import Haskell.Prim.Bool
open import Haskell.Prim.Eq
open import Haskell.Prim.Ord

open import Haskell.Law.Bool
open import Haskell.Law.Eq
open import Haskell.Law.Equality
open import Haskell.Law.Integer
open import Haskell.Law.Ord.Def
open import Haskell.Law.Ord.Nat
open import Haskell.Law.Nat

instance
iLawfulOrdInteger : IsLawfulOrd Integer

iLawfulOrdInteger .comparability (pos n) (pos m) = comparability n m
iLawfulOrdInteger .comparability (pos n) (negsuc m) = refl
iLawfulOrdInteger .comparability (negsuc n) (pos m) = refl
iLawfulOrdInteger .comparability (negsuc n) (negsuc m)
rewrite sym $ lte2gte m n
| sym $ lte2gte n m
= comparability m n

iLawfulOrdInteger .transitivity (pos n) (pos m) (pos o) h₁ = transitivity n m o h₁
iLawfulOrdInteger .transitivity (pos n) (pos m) (negsuc o) h₁
rewrite &&-sym (n <= m) False
= h₁
iLawfulOrdInteger .transitivity (negsuc n) y (pos o) h₁ = refl
iLawfulOrdInteger .transitivity (negsuc n) (negsuc m) (negsuc o) h₁
rewrite eqSymmetry n o
= transitivity o m n (trans (reverseLte o m m n) h₁)

iLawfulOrdInteger .reflexivity (pos n) = reflexivity n
iLawfulOrdInteger .reflexivity (negsuc n) = reflexivity n

iLawfulOrdInteger .antisymmetry (pos n) (pos m) h₁ = antisymmetry n m h₁
iLawfulOrdInteger .antisymmetry (negsuc n) (negsuc m) h₁ = antisymmetry n m
$ trans (reverseLte n m m n) h₁

iLawfulOrdInteger .lte2gte (pos n) (pos m)
rewrite eqSymmetry n m
= refl
iLawfulOrdInteger .lte2gte (pos n) (negsuc m) = refl
iLawfulOrdInteger .lte2gte (negsuc n) (pos m) = refl
iLawfulOrdInteger .lte2gte (negsuc n) (negsuc m)
rewrite eqSymmetry n m
= refl

iLawfulOrdInteger .lt2LteNeq (pos n) (pos m) = lt2LteNeq n m
iLawfulOrdInteger .lt2LteNeq (pos n) (negsuc m) = refl
iLawfulOrdInteger .lt2LteNeq (negsuc n) (pos m) = refl
iLawfulOrdInteger .lt2LteNeq (negsuc n) (negsuc m)
rewrite eqSymmetry n m
= lt2LteNeq m n

iLawfulOrdInteger .lt2gt x y = refl

iLawfulOrdInteger .compareLt (pos n) (pos m) = compareLt n m
iLawfulOrdInteger .compareLt (pos n) (negsuc m) = refl
iLawfulOrdInteger .compareLt (negsuc n) (pos m) = refl
iLawfulOrdInteger .compareLt (negsuc n) (negsuc m)
rewrite eqSymmetry n m
= compareLt m n

iLawfulOrdInteger .compareGt (pos n) (pos m) = compareGt n m
iLawfulOrdInteger .compareGt (pos n) (negsuc m) = refl
iLawfulOrdInteger .compareGt (negsuc n) (pos m) = refl
iLawfulOrdInteger .compareGt (negsuc n) (negsuc m)
rewrite eqSymmetry n m
= compareGt m n

iLawfulOrdInteger .compareEq (pos n) (pos m) = compareEq n m
iLawfulOrdInteger .compareEq (pos n) (negsuc m) = refl
iLawfulOrdInteger .compareEq (negsuc n) (pos m) = refl
iLawfulOrdInteger .compareEq (negsuc n) (negsuc m)
rewrite eqSymmetry n m
= compareEq m n

iLawfulOrdInteger .min2if (pos n) (pos m)
rewrite lte2ngt n m
| sym $ ifFlip (m < n) (pos m) (pos n)
= eqReflexivity (min (pos n) (pos m))
iLawfulOrdInteger .min2if (pos n) (negsuc m) = eqReflexivity m
iLawfulOrdInteger .min2if (negsuc n) (pos m) = eqReflexivity n
iLawfulOrdInteger .min2if (negsuc n) (negsuc m)
rewrite gte2nlt n m
| sym $ ifFlip (n < m) (negsuc m) (negsuc n)
= eqReflexivity (min (negsuc n) (negsuc m))

iLawfulOrdInteger .max2if (pos n) (pos m)
rewrite gte2nlt n m
| sym (ifFlip (n < m) (pos m) (pos n))
= eqReflexivity (max (pos n) (pos m))
iLawfulOrdInteger .max2if (pos n) (negsuc m) = eqReflexivity n
iLawfulOrdInteger .max2if (negsuc n) (pos m) = eqReflexivity m
iLawfulOrdInteger .max2if (negsuc n) (negsuc m)
rewrite lte2ngt n m
| sym $ ifFlip (m < n) (negsuc m) (negsuc n)
= eqReflexivity (max (negsuc n) (negsuc m))

0 comments on commit bb5c94f

Please sign in to comment.