Skip to content

Code for the paper "Improved, Deterministic Smoothing for L_1 Certified Robustness"

License

Notifications You must be signed in to change notification settings

alevine0/smoothingSplittingNoise

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Improved, Deterministic Smoothing for L_1 Certified Robustness

Code for the paper "Improved, Deterministic Smoothing for L_1 Certified Robustness" (Preprint: https://arxiv.org/abs/2103.10834) by Alexander Levine and Soheil Feizi.

Most of the code is in the src directory, which is a fork of the code for (Yang et al. 2020) available at https://github.com/tonyduan/rs4a. Instructions for installing dependencies are reproduced here:

conda install numpy matplotlib pandas seaborn 
conda install pytorch torchvision cudatoolkit=10.0 -c pytorch
pip install torchnet tqdm statsmodels dfply

We have added options for SSN and DSSN smoothing distributions/certificates.

To train (a WideResNet-40 on CIFAR-10) using Independent SSN,

python3 -m src.train  --noise=SplitMethod --sigma=${SIGMA}  --experiment-name=cifar_split_${SIGMA} --output-dir checkpoints

To train using DSSN,

python3 -m src.train  --noise=SplitMethodDerandomized --seed=0 --sigma=${SIGMA}  --experiment-name=cifar_split_derandomized_${SIGMA} --output-dir checkpoints 

To generate Independent SSN certificates,

python3 -m src.test --output-dir=checkpoints --noise=SplitMethod --sigma ${SIGMA} --experiment-name=cifar_split_${SIGMA} --noise-batch-size=128

To generate DSSN certificates,

python3 -m src.test_derandomized --seed 0 --output-dir=checkpoints --noise=SplitMethodDerandomized --sigma ${SIGMA} --experiment-name=cifar_split_derandomized_${SIGMA} --noise-batch-size=128

Note that for ImageNet training and testing, the directories where ImageNet files are expected are set using the bash variables $IMAGENET_TRAIN_DIR and $IMAGENET_TEST_DIR.

Pretrained models and certificate data for CIFAR-10 are included in checkpoints directory. Certificate data for ImageNet is also included here (although checkpoints are not, due to GitHub space constraints.)

++++++++++++++++++++++++++++++++++++

For the denoiser experiments in Appendix D, we used the denoising implementation from (Salman et al. 2020) available at https://github.com/microsoft/denoised-smoothing. This package is forked in the "denoised-smoothing" directory. We have added options for training under uniform SSN, and DSSN noise. Specifically, denoised-smoothing/train_denoiser.py now takes a --noise_type flag, which can be set to 'uniform', 'split' (Independent SSN) or 'split_derandomized' (DSSN), as well as a --seed flag (for DSSN). Additionally the 'cifar_wrn40' classifier architecture has been added. We trained the 'clean' base classifier as a WideResNet-40 using otherwise standard arguments for this package (as described in Salman et al. 2020, Section A.2), and likewise trained denoisers using standard arguments.

To use a denoiser with the certification framework, there are two workflows. If the denoiser is being used with an unmodified network for clean classification (Stability denoiser or MSE denioser without retraining), the pattern is:

python3 -m src.test --output-dir=denoise --noise=SplitMethod --sigma 0.5 --experiment-name=cifar_split_0.5 --model WideResNetCompat --noise-batch-size=128 --save-path <Path to clean classifier model> --denoiser-path <Path to denoiser>

(Note that we need to use WideResNetCompat to handle differences between the two packages)

If we are training the classifier from scratch on an existing denoiser, the pattern is:

python3 -m src.train --noise=SplitMethod --sigma=2.0 --experiment-name=cifar_split_2.0 --output-dir denoise_2 --denoiser-path <Path to denoiser>

python3 -m src.test --dataset-skip 20 --output-dir=denoise_2 --noise=SplitMethod --sigma 2.0 --experiment-name=cifar_split_2.0 --noise-batch-size=128 --with_denoiser

About

Code for the paper "Improved, Deterministic Smoothing for L_1 Certified Robustness"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages