Skip to content

Commit

Permalink
Merge pull request #509 from TheSunWillRise/phpo
Browse files Browse the repository at this point in the history
  • Loading branch information
joneswong authored Feb 14, 2023
2 parents 49b342d + d834793 commit 2b6449a
Show file tree
Hide file tree
Showing 21 changed files with 2,942 additions and 0 deletions.
4 changes: 4 additions & 0 deletions federatedscope/autotune/fts/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
from federatedscope.autotune.fts.server import FTSServer
from federatedscope.autotune.fts.client import FTSClient

__all__ = ['FTSServer', 'FTSClient']
238 changes: 238 additions & 0 deletions federatedscope/autotune/fts/client.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,238 @@
import os
import logging
import json
import copy
import pickle
import numpy as np

from federatedscope.core.message import Message
from federatedscope.core.workers import Client

from federatedscope.autotune.fts.utils import *
from federatedscope.autotune.utils import parse_search_space
from federatedscope.core.auxiliaries.trainer_builder import get_trainer

logger = logging.getLogger(__name__)


class FTSClient(Client):
def __init__(self,
ID=-1,
server_id=None,
state=-1,
config=None,
data=None,
model=None,
device='cpu',
strategy=None,
is_unseen_client=False,
*args,
**kwargs):
super(FTSClient,
self).__init__(ID, server_id, state, config, data, model, device,
strategy, is_unseen_client, *args, **kwargs)
self.data = data
self.model = model
self.device = device
self._diff = config.hpo.fts.diff
self._init_model = copy.deepcopy(model)

# local file paths
self.local_bo_path = os.path.join(self._cfg.hpo.working_folder,
"local_bo_" + str(self.ID) + ".pkl")
self.local_init_path = os.path.join(
self._cfg.hpo.working_folder,
"local_init_" + str(self.ID) + ".pkl")
self.local_info_path = os.path.join(
self._cfg.hpo.working_folder, "local_info_" + str(self.ID) +
"_M_" + str(self._cfg.hpo.fts.M) + ".pkl")

# prepare search space and bounds
self._ss = parse_search_space(self._cfg.hpo.fts.ss)
self.dim = len(self._ss)
self.bounds = np.asarray([(0., 1.) for _ in self._ss])
self.pbounds = {}
for k, v in self._ss.items():
if not (hasattr(v, 'lower') and hasattr(v, 'upper')):
raise ValueError("Unsupported hyper type {}".format(type(v)))
else:
if v.log:
l, u = np.log10(v.lower), np.log10(v.upper)
else:
l, u = v.lower, v.upper
self.pbounds[k] = (l, u)

def _apply_hyperparams(self, hyperparams):
"""Apply the given hyperparameters
Arguments:
hyperparams (dict): keys are hyperparameter names \
and values are specific choices.
"""

cmd_args = []
for k, v in hyperparams.items():
cmd_args.append(k)
cmd_args.append(v)

self._cfg.defrost()
self._cfg.merge_from_list(cmd_args)
self._cfg.freeze(inform=False)

self.trainer.ctx.setup_vars()

def _get_new_trainer(self):
self.model = copy.deepcopy(self._init_model)
self.trainer = get_trainer(model=self.model,
data=self.data,
device=self.device,
config=self._cfg,
is_attacker=self.is_attacker,
monitor=self._monitor)

def _obj_func(self, x, return_eval=False):
"""
Run local evaluation, return some metric to maximize (e.g. val_acc)
"""
self._get_new_trainer()

baseline = 5.0
hyperparams = x2conf(x, self.pbounds, self._ss)
self._apply_hyperparams(hyperparams)

results_before = self.trainer.evaluate('val')
for _ in range(self._cfg.hpo.fts.local_bo_epochs):
sample_size, model_para_all, results = self.trainer.train()
results_after = self.trainer.evaluate('val')

if self._diff:
res = results_before['val_avg_loss'] \
- results_after['val_avg_loss']
else:
res = baseline - results_after['val_avg_loss']
if return_eval:
return res, results_after
else:
return res

def _generate_agent_info(self, rand_feats):
logger.info(
('-' * 20, ' generate info on clinet %d ' % self.ID, '_' * 20))
v_kernel = self._cfg.hpo.fts.v_kernel
obs_noise = self._cfg.hpo.fts.obs_noise
M = self._cfg.hpo.fts.M
M_target = self._cfg.hpo.fts.M_target

# run standard BO locally
max_iter = self._cfg.hpo.fts.local_bo_max_iter
gp_opt_schedule = self._cfg.hpo.fts.gp_opt_schedule
pt = np.ones(max_iter + 5)
LocalBO(cid=self.ID,
f=self._obj_func,
bounds=self.bounds,
keys=list(self.pbounds.keys()),
gp_opt_schedule=gp_opt_schedule,
use_init=None,
log_file=self.local_bo_path,
save_init=True,
save_init_file=self.local_init_path,
pt=pt,
P_N=None,
ls=self._cfg.hpo.fts.ls,
var=self._cfg.hpo.fts.var,
g_var=self._cfg.hpo.fts.g_var,
N=self._cfg.federate.client_num - 1,
M_target=M_target).maximize(n_iter=max_iter, init_points=3)

# generate local RFF information
res = pickle.load(open(self.local_bo_path, "rb"))
ys = np.array(res["all"]["values"]).reshape(-1, 1)
params = np.array(res["all"]["params"])
xs = np.array(params)
xs, ys = xs[:max_iter], ys[:max_iter]
Phi = np.zeros((xs.shape[0], M))

s, b = rand_feats["s"], rand_feats["b"]
for i, x in enumerate(xs):
x = np.squeeze(x).reshape(1, -1)
features = np.sqrt(2 / M) * np.cos(np.squeeze(np.dot(x, s.T)) + b)
features = features / np.sqrt(np.inner(features, features))
features = np.sqrt(v_kernel) * features
Phi[i, :] = features

Sigma_t = np.dot(Phi.T, Phi) + obs_noise * np.identity(M)
Sigma_t_inv = np.linalg.inv(Sigma_t)
nu_t = np.dot(np.dot(Sigma_t_inv, Phi.T), ys)
w_samples = np.random.multivariate_normal(np.squeeze(nu_t),
obs_noise * Sigma_t_inv, 1)
pickle.dump(w_samples, open(self.local_info_path, "wb"))

def callback_funcs_for_model_para(self, message: Message):
round, sender, content = message.state, message.sender, message.content
require_agent_infos = content['require_agent_infos']

# generate local info and init then send them to server
if require_agent_infos:
rand_feat = content['random_feats']
self._generate_agent_info(rand_feat)
agent_info = pickle.load(open(self.local_info_path, "rb"))
agent_init = pickle.load(open(self.local_init_path, "rb"))
content = {
'is_required_agent_info': True,
'agent_info': agent_info,
'agent_init': agent_init,
}

# local run on given hyper-param and return performance
else:
x_max = content['x_max']
curr_y, eval_res = self._obj_func(x_max, return_eval=True)
content = {
'is_required_agent_info': False,
'curr_y': curr_y,
}
hyper_param = x2conf(x_max, self.pbounds, self._ss)
logger.info('{Client: %d, ' % self.ID +
'GP_opt_iter: %d, ' % round + 'Params: ' +
str(hyper_param) + ', Perform: ' + str(curr_y) + '}')
logger.info(
self._monitor.format_eval_res(eval_res,
rnd=self.state,
role='Client #{}'.format(
self.ID),
return_raw=True))

self.state = round
self.comm_manager.send(
Message(msg_type='model_para',
sender=self.ID,
receiver=[sender],
state=self.state,
content=content))

def callback_funcs_for_evaluate(self, message: Message):
round, sender, content = \
message.state, message.sender, message.content
require_agent_infos = content['require_agent_infos']
assert not require_agent_infos, \
"Can not evaluate when there is no agents' information"

self.state = message.state
self._obj_func(content['x_max'])

metrics = {}
for split in self._cfg.eval.split:
eval_metrics = self.trainer.evaluate(target_data_split_name=split)
for key in eval_metrics:
if self._cfg.federate.mode == 'distributed':
logger.info('Client #{:d}: (Evaluation ({:s} set) at '
'Round #{:d}) {:s} is {:.6f}'.format(
self.ID, split, self.state, key,
eval_metrics[key]))
metrics.update(**eval_metrics)

self.comm_manager.send(
Message(msg_type='metrics',
sender=self.ID,
receiver=[sender],
state=self.state,
content=metrics))
Loading

0 comments on commit 2b6449a

Please sign in to comment.