This repository has been archived by the owner on Jun 14, 2024. It is now read-only.
Releases: amzn/MXFusion
Releases · amzn/MXFusion
Release Version 0.3.1
- Added SVGP regression notebook.
- Updated the VAE and GP regression notebook.
- Removed the dependency on scikit-learn.
- Moved the parameters of Gluon block to be controlled by MXFusion.
- Fixed a bug in mini-batch learning.
- Extended the SVGPRegression module to take samples as input variables.
- Documentation and stylistic edits.
- Merged in the PILCO Changes
Release Version 0.3.0
Release Version 0.2.1
- Add the tutorial for Gaussian process regression.
- Fix empty operator bug.
- Fix bug to allow the same variable for multiple inputs to a factor.
- Add module serialization.
- Fix the bug that causes the failure of documentation compilation.
- Fix the bug: the inference methods of GP modules do not handle samples.
- Update issue templates.
- Add license headers to all files.
- Add the getting started notebook.
- Remove the dependency on future.
- Update the Inference documentation.
- Implement Dirichlet distribution.
- Add logistic variable transformation.
- Implement Expectation inference.
- Fix the bugs related to dtype.
- Validate shape of array variables.
- Fix divide by zero error if max_iter < n_prints.
- Add multiply kernel.
Release version 0.2.0
- Improve the printing messages of gradient loop and bug fix for GluonFunctionEvaluation
- Add Gamma Distribution
- GP Modules enhancement
- Implement Module, GPRegression, SparseGPRegression and SVGPRegression…
- Update the README
- Add score function for variational inference enhancement
- Refactor the interface of inferece for module
- Add score function inference
- Implement common MXNet operators (dot product, diag, etc. in MXFusion enhancement
- Add support for MXNet operators.
- Cleanup kernel function and function wrappers for copying enhancement
- Implement the base class MXFusionFunction