Custom code used in the paper: Hybridization and introgression drives genome evolution of the Dutch Elm Disease pathogens
All open source software used in the study is listed in Open_source_software.md
Bash commands used to run the analyses are in the file Bash_commands.md
All custom scripts are organized in four folders according to the appearance in the Results section
- plotDAPC_SNP.R # plotting DAPC analysis based on SNP variants
- plotDAPC_CNV.R # plotting DAPC analysis based on CNV variants
- simulate_point_locations.R # simulating coordinates of point labels
- map_geo.R # plotting a map with strains
- plotGlobe.R # plotting picture of a globe
- plotTree.py # plotting NJ phylogeny
- plotStructure.R # plotting structure analysis
- PCA_Plot.R # plotting PCA results
- writeVcfToFasta.py # conversion of vcf to fasta
- drawTree.py # plotting mtDNA tree
- simulate_point_locations.R # simulating coordinates of point labels
- plotStructureMap.R # plotting structure results for K = 3 on a map
- plotStructure_novoulmi.R # plotting structure barplots in O. novo-ulmi
- plotStructure_ulmi.R # plotting structure barplots in O. ulmi
- pca_ulm_plot.R # plotting PCA based on O. ulmi SNPs
Comparing_introgression_events
- plotPCA.R # Plotting PCA for each introgressed region
- selectStrainsForBranchEstimationBootstrapAllOU.ipynb # Estimating branch length per each IR and bootstrapping estimates
- plotBranchEstimates.R # Plotting bootstrap values of branch length of each introgressed region
- calcStats.ipynb # Comparing and plotting branch lengths between rare and frequent IRs
Diversity_and_genotype_heatmap
- combineDxy.py # getting Dxy per window estimates
- convert2MajorMinor.py # converting genotypes into major-minor allele
- plotGenotypesHeatMap.R # plottig heatmap of genotypes
- plotDiversityDist.R # plotting distribution of diversity in 50 kb windows
- calculateCorrelations.R # plotting diversity/divergence correlations
- plotAngsdWindows_short_Pi_Dxy.R # plotting tree weighting, Pi and Dxy, in windows across the genome
- plotAngsdWindows_short_Fst.R # plotting tree weighting and Fst in windows across the genome
- plotAngsdWindows_short_Taj.R # plotting tree weighting, Tajima's D and Dxy in windows across the genome
- plotGeneDiscordancies.R # plotting tree weighting in 100 SNP windows, filtered 100 SNP windows and 50 kb windows
- plotBoxplots.R # plotting boxplots of global and per-window distances and diversity in Ophiostoma lineages
- plot_Dstatistic.R # dotplot with standard errors of D-statistic
- mk_circos.sh # script for plotting circos chronogram
- plotTargetsAndDiversity.R # plotting ULM ancestry, diversity within, divergence between lineages and targets of positive selection across the genome
Gene_flow_between_Ophiostoma_lineages
- runUnbiasedD_Outgr.py # estimating D-statistic
- bootstrapPi.py # detecting high diversity regions across the genome
- plotDepth_heatmap.R # plotting coverage and admixture around mating types
- plotTree_MAT.py # plotting phylogenetic trees around mating types
- runPCA.R # running PCA analysis for a window and extracting distance of each strain with ULM
- mk_circos.sh # script for plotting circos chronogram with structure in windows results
- filter_ULMLike.py # Identifying strains with ULM ancestry from tree topology
- filterFasta.py # selecting strains from fasta alignments
- SnIPRE_running_script_Ophiostoma.R # running snipre program to detect genes under selection
- plotSnipreResults.R # plotting snipre results
Genetic_diversity_and_divergence
- diversity_divergence_stats_popgenome.R # calculating diversity/divergence in genes
Processing pictures and extracting growth information
- ophiostoma_phenotyping_picture_analysis_function.R # a function to process images
- ophiostoma_phenotyping_launch.R # launching a function for each picture
Modelling and plotting isolate growth in different conditions and virulence on apples
- growth_virulence_modeling_Fig4_S17_S18_script.R # plotting growth & virulence results