Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Emit job ids via side output in TriggerFileLoads process to keep beam.Flatten() happy for Spark and Flink runners #23954

Merged
merged 2 commits into from
Nov 3, 2022
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
43 changes: 26 additions & 17 deletions sdks/python/apache_beam/io/gcp/bigquery_file_loads.py
Original file line number Diff line number Diff line change
Expand Up @@ -437,18 +437,18 @@ def process(self, element, schema_mod_job_name_prefix):
# Trigger potential schema modification by loading zero rows into the
# destination table with the temporary table schema.
schema_update_job_reference = self.bq_wrapper.perform_load_job(
destination=table_reference,
source_stream=io.BytesIO(), # file with zero rows
job_id=job_name,
schema=temp_table_schema,
write_disposition='WRITE_APPEND',
create_disposition='CREATE_NEVER',
additional_load_parameters=additional_parameters,
job_labels=self._bq_io_metadata.add_additional_bq_job_labels(),
# JSON format is hardcoded because zero rows load(unlike AVRO) and
# a nested schema(unlike CSV, which a default one) is permitted.
source_format="NEWLINE_DELIMITED_JSON",
load_job_project_id=self._load_job_project_id)
destination=table_reference,
source_stream=io.BytesIO(), # file with zero rows
job_id=job_name,
schema=temp_table_schema,
write_disposition='WRITE_APPEND',
create_disposition='CREATE_NEVER',
additional_load_parameters=additional_parameters,
job_labels=self._bq_io_metadata.add_additional_bq_job_labels(),
# JSON format is hardcoded because zero rows load(unlike AVRO) and
# a nested schema(unlike CSV, which a default one) is permitted.
source_format="NEWLINE_DELIMITED_JSON",
load_job_project_id=self._load_job_project_id)
self.pending_jobs.append(
GlobalWindows.windowed_value(
(destination, schema_update_job_reference)))
Expand Down Expand Up @@ -597,6 +597,7 @@ class TriggerLoadJobs(beam.DoFn):
"""

TEMP_TABLES = 'TemporaryTables'
ONGOING_JOBS = 'OngoingJobs'

def __init__(
self,
Expand Down Expand Up @@ -718,6 +719,8 @@ def process(self, element, load_job_name_prefix, *schema_side_inputs):
source_format=self.source_format,
job_labels=self.bq_io_metadata.add_additional_bq_job_labels(),
load_job_project_id=self.load_job_project_id)
yield pvalue.TaggedOutput(
TriggerLoadJobs.ONGOING_JOBS, (destination, job_reference))
self.pending_jobs.append(
chamikaramj marked this conversation as resolved.
Show resolved Hide resolved
GlobalWindows.windowed_value((destination, job_reference)))

Expand Down Expand Up @@ -1061,13 +1064,17 @@ def _load_data(
load_job_project_id=self.load_job_project_id),
load_job_name_pcv,
*self.schema_side_inputs).with_outputs(
TriggerLoadJobs.TEMP_TABLES, main='main'))
TriggerLoadJobs.TEMP_TABLES,
TriggerLoadJobs.ONGOING_JOBS,
main='main'))

temp_tables_load_job_ids_pc = trigger_loads_outputs['main']
finished_temp_tables_load_job_ids_pc = trigger_loads_outputs['main']
temp_tables_load_job_ids_pc = trigger_loads_outputs[
TriggerLoadJobs.ONGOING_JOBS]
temp_tables_pc = trigger_loads_outputs[TriggerLoadJobs.TEMP_TABLES]

schema_mod_job_ids_pc = (
temp_tables_load_job_ids_pc
finished_temp_tables_load_job_ids_pc
| beam.ParDo(
UpdateDestinationSchema(
project=self.project,
Expand All @@ -1079,7 +1086,7 @@ def _load_data(
schema_mod_job_name_pcv))

copy_job_outputs = (
temp_tables_load_job_ids_pc
finished_temp_tables_load_job_ids_pc
| beam.ParDo(
TriggerCopyJobs(
project=self.project,
Expand Down Expand Up @@ -1120,7 +1127,9 @@ def _load_data(
step_name=step_name,
load_job_project_id=self.load_job_project_id),
load_job_name_pcv,
*self.schema_side_inputs))
*self.schema_side_inputs).with_outputs(
TriggerLoadJobs.ONGOING_JOBS, main='main')
)[TriggerLoadJobs.ONGOING_JOBS]

destination_load_job_ids_pc = (
(temp_tables_load_job_ids_pc, destination_load_job_ids_pc)
Expand Down